
Validation and Verification of METEOR

safety software

Jean-Louis BOULANGER

CERTIFER/SILAS

METEOR presentation

METEOR is also the line 14
of the Paris Métro

• Inaugurated the 15/10/1998

• 7.2 km, between “ Madeleine “ and “François
Mitterrand Library“ for 7 stations

• 25 000 passengers by hour and by wayside

• 19 trains of 6 cars (extension to 8 cars possible)

• 40 km/h : Commercial speed

• 85 s : Interval in automatic mode

A complex automatism

1 - video in train

2 - inter-phone in train

3 - video in platform

4 - inter- phone in platform

5 - platform doors

6 -On Board control unit

7 - transmission

8 - transmission SWE-OBCU

9 - interlocking

10 -Sector Wayside
equipment

11 -Operation Control
center

A distributed architecture of
redundancy calculators

Automatic Line Controller

Automatic

Section1

Controller

Automatic Onboard

Controller

Automatic Onboard

Controller

Automatic

Section2

Controller

Automatic

SectionN

Controller

……

Operation Control

Center

METEOR, is ...

• Two kinds of trains :
 - equipped train

 - Unequipped train

• Two modes of running :
 - Automatic mode

 - Manual mode

Development process

Safety Calculator Architecture

• Standard VME with Safety Coded Processor technology

• A generic elementary calculator :

 - Specific treatment of safety coded processor,

 - Input acquisition,

 - Management of the transmission, …

• 3 specific applications :

 - Safety application,

 - Functional application,

 - Transmission application

Actors and functions

 Industrial MTI La RATP

 Realize and validate control and validate

by

specifications

 development ..

With B tool .

Test functions and

Data

File maintenance

by

model

safety studies

test on safety

functions and Data

Data validation

Evaluate coverage

tests on software

Verify/assess

Industrial

produces:

- Specifications

Model

Safety studies

Software

development

with B Tool

Industrial test

Industrial verification

Industrial validation

coverage

by

Model

Safety studies

Properties

Functional test

Data validation

Process to generate

software

Coverage test/software

File maintenance

Software and Data

Software

specification

Running software

Line

Description

B model

DataSafety ADA

software

 Train

 Characteristics

Process to develop data

Line

Description

ALC

Data

AOC

Data

 ASC 1

 Data

ASC 2

Data

Generation

Tool

Train

Characteristics

Life cycle with B

Software specification
Functional test

Formal expression

in B

Formal

Design

Automatic

software generation

integration

proof

proof

proof

RATP Validation process

RATP Process

 3 Main activities :

• Validation of the elementary calculator

• Functional validation of the safety software

• Verification of industrial produces

Functional validation (1)

• Formalisation of activities and responsibilities
in a Software Validation Plan

• Formalisation of the methodology to
determine tests in a Tests Plan

• Formalisation of the methodology to validate
the data in a Data Validation Plan

Functional Validation (2)

• Analysis of specification documents to :

 - get knowledge of the system,

 - produce a critical analysis,

 - produce a list of safety functions,

 - produce a list of safety properties,

• Produce a Principle functional book for each
safety function

Functional Validation (3)

• Models of safety critical functions :
 Dynamic analysis used to

 - Validate specification

 - Verify safety properties respect

 - determine functional tests

• Tools used :

 - ELSIR

 - ASA+

Functional Validation (4)

• Test of safety critical functions :

 - Produce tests with models

 - Run tests on test benches

 - Verify test results

 - Verify properties on test results

 - determine test coverage/specification

Functional Validation (5)

• Additional analysis for Distributed Functions :

 - Safety analysis to determine critical situation level
sub-system,

 - Dynamic analysis to verify the timing of information
exchange between calculators,

 - Determination of specific tests.

Data validation tool

Line

Description

Data

Data produced

Tool

Data

produced

Comparison

tool

Check properties

Tool

OK or KOOK or KO

Train

Charactersitics

Data properties
Example

• P4 :All track circuits are well chained in the
line.

• P5 : Route is correct with switch position.

• P6 : Speed is correct with protected point.

• ...

Conclusion

Some results

RATP process :

• 20 principle books on safety function

• 23 Models

• 30 tests books

• 5 000 tests on real time simulator.

Remarks / Anomalies

• 400 Safety remarks on software specifications

• 110 Anomalies on safety software

 Of course, all safety-critical anomalies were

corrected before the latest version of the

software was released.

METEOR results (1)

• Since 1998, METEOR is running without problem

• Service Quality = 99.8

• Passengers by day = 130 000

• Satisfaction of the passengers

• Successful results

METEOR results (2)

• COFRAC had accredited our laboratory on this
process on 1999

• We were the first French Laboratory to be
accredited by the COFRAC

• In 2000, accreditation was extended with B
method and our accreditation was continued
for 15 months

Safety properties
Example

• P1 :Only equipped train which is located and
in automatic mode can have a target.

• P3 : The trains locations computed by the SWE
must be correct with the actual trains
locations on the line

The use of formal method for developing
railway safety critical software in

compliance with the CENELEC 50128:2011

Jean-louis BOULANGER

CERTIFER

jean-louis.boulanger@certifer.eu

28

29

CENELEC 50128:2011

EN	50128	

Clauses	5	

Clauses	6	

Clauses	7	

Clauses	8	

Application Data

Generic software

Software Assurance

Clauses	9	

Maintenance
Deployment

Organisation

Clauses	4	SSIL

Annex	A	 Annex	D	

Technics Bibliography of technics

Annex	B	 Role

30

Assurance software

• Assurance software :

• Competency management;

• Quality management;

• V&V;

• Assessment;

• Tools qualification.

31

V&V

Formal proof

32

CENELEC EN 50128:2011

• In the CENELEC EN 50128, the formal method are

used at different places

• For realization (specification, …);

• For verification.

• There 2 notions :

• Formal model + Formal analysis :

• SCADE, B method, etc.

• Formal analysis:

• Proof, model-checking, etc.

DATA

33

Data

1

2

3

4

5

6

d1

f1

FprEN 50128:2011 - 54 -

7.7.4.11 Any discrepancies found, including detected errors and non-compliances with this European 1834
Standard or with any of the software requirements or plans, as well as constraints and limitations, shall be 1835
clearly identified in a separate subclause of the Software Validation Report, evaluated regarding the safety 1836
integrity level and included in any Release Note which accompanies the delivered software. 1837

7.7.4.12 A Release Note which accompanies the delivered software shall include all restrictions in using the 1838
software. These restrictions are derived from 1839

a) the detected errors, 1840

b) non-compliances with this European Standard, 1841

c) degree of fulfilment of the requirements, 1842

d) degree of fulfilment of any plan. 1843

8 Development of application data or algorithms: systems configured by application data 1844

or algorithms 1845

8.1 Objectives 1846

8.1.1 A characteristic feature in many railway systems is the need to design each installation to meet the 1847
individual requirements for a specific application. A system configured by application data and/or by 1848
application algorithms allows approved generic software to be customized with the individual requirements for 1849
each specific application. 1850

The objective for the development of application data is the correct deriving of the data from the given 1851
installation and the check of the intended behaviour, followed by an assessment of the used development 1852
process for that application data. 1853

The requirements for the development of application algorithms are the same as the development of generic 1854
software as described in Clauses 1-7 and 9. 1855

A typical example is a system whose generic software is pre-configured for a generic railway application by a 1856
set of application algorithms, and which is then further configured to each specific installation by instantiation 1857
and interconnection of the application algorithms and by a set of configuration data. For instance, the 1858
signalling principles of an interlocking system (e.g. signal management, point management) may be 1859
implemented by a set of application algorithms. 1860

Application data typically take the form of parameter values or descriptions (identity, type, location, etc.) of 1861
external objects. Application algorithms may take the form of e.g. function block diagrams, state charts and 1862
relay ladder diagrams, which determine the desired response of the system according to its inputs, its current 1863
state and specific parameter values. Application algorithms include logical connections and operations to be 1864
executed. 1865

The application data/algorithms are usually produced using dedicated tools. They may be expressed in 1866
tabular or diagrammatic formats, which can be interpreted or compiled into executable codes often after 1867
conversion into source codes handled via specialised languages (with syntax and semantics). 1868

The customization of systems through configurability gives the designer different degrees of control over the 1869
detailed software functionality. 1870

FprEN 50128:2011 - 54 -

7.7.4.11 Any discrepancies found, including detected errors and non-compliances with this European 1834
Standard or with any of the software requirements or plans, as well as constraints and limitations, shall be 1835
clearly identified in a separate subclause of the Software Validation Report, evaluated regarding the safety 1836
integrity level and included in any Release Note which accompanies the delivered software. 1837

7.7.4.12 A Release Note which accompanies the delivered software shall include all restrictions in using the 1838
software. These restrictions are derived from 1839

a) the detected errors, 1840

b) non-compliances with this European Standard, 1841

c) degree of fulfilment of the requirements, 1842

d) degree of fulfilment of any plan. 1843

8 Development of application data or algorithms: systems configured by application data 1844

or algorithms 1845

8.1 Objectives 1846

8.1.1 A characteristic feature in many railway systems is the need to design each installation to meet the 1847
individual requirements for a specific application. A system configured by application data and/or by 1848
application algorithms allows approved generic software to be customized with the individual requirements for 1849
each specific application. 1850

The objective for the development of application data is the correct deriving of the data from the given 1851
installation and the check of the intended behaviour, followed by an assessment of the used development 1852
process for that application data. 1853

The requirements for the development of application algorithms are the same as the development of generic 1854
software as described in Clauses 1-7 and 9. 1855

A typical example is a system whose generic software is pre-configured for a generic railway application by a 1856
set of application algorithms, and which is then further configured to each specific installation by instantiation 1857
and interconnection of the application algorithms and by a set of configuration data. For instance, the 1858
signalling principles of an interlocking system (e.g. signal management, point management) may be 1859
implemented by a set of application algorithms. 1860

Application data typically take the form of parameter values or descriptions (identity, type, location, etc.) of 1861
external objects. Application algorithms may take the form of e.g. function block diagrams, state charts and 1862
relay ladder diagrams, which determine the desired response of the system according to its inputs, its current 1863
state and specific parameter values. Application algorithms include logical connections and operations to be 1864
executed. 1865

The application data/algorithms are usually produced using dedicated tools. They may be expressed in 1866
tabular or diagrammatic formats, which can be interpreted or compiled into executable codes often after 1867
conversion into source codes handled via specialised languages (with syntax and semantics). 1868

The customization of systems through configurability gives the designer different degrees of control over the 1869
detailed software functionality. 1870

Data preparation

1

2

3

4

5

6

d1

f1

	

DATA system

- Id

- Family

- Format

- Unit

- …

Generic

Application

DATA

- Id

- Family

- Format

- Unit

- …

specify

First step

Third step

Data preparation

Second step

36

Data preparation (3/3)

8.4.1 Application Development Process

•Application Preparation Plan

•Risk analysis on the application development process

•Application Data/Algorithms Verification Report

• Consistency of the Application Preparation Plan

•Traceability

•Software assurance

•…

• Verify that the

implementation is possible

Generic Software

37

38

Software requirement

The Software Requirements Specification is the first step.

In this phase, we produced two kinds of document
-The software requirement specification;
-The overall software tests specification.

SRS OSTS

System RS

 functional requirement

Safety analysis

 => safety requirement

39

Software Requirement

The Software Requirements Specification shall be:
i) complete,
ii) clear precise,
iii) unequivocal,
iv) verifiable,
v) Testable (not all),
vi) maintainable and
vii) feasible,
viii) traceable back to all input documents

40

Requirement and models
FprEN 50128:2011 - 68 -

 2266

Table A.2 � Software Requirements Specification (7.2) 2267

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Formal Methods (based on a mathematical
approach)

D.28 - R R HR HR

2. Modelling Table
A.17

R R R HR HR

3. Structured methodology D.52 R R R HR HR

4. Decision Tables D.13 R R R HR HR

Requirements:

1) The Software Requirements Specification shall include a description of the problem in natural language
and any necessary formal or semiformal notation.

2) The table reflects additional requirements for defining the specification clearly and precisely. One or more
of these techniques shall be selected to satisfy the Software Safety Integrity Level being used.

 2268

41

Modeling

FprEN 50128:2011 - 76 -

Table A.17 � Modelling 2300

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Data Modelling D.65 R R R HR HR

2. Data Flow Diagrams D.11 - R R HR HR

3. Control Flow Diagrams D.66 R R R HR HR

4. Finite State Machines or State Transition
Diagrams

D.27 - HR HR HR HR

5. Time Petri Nets D.55 - R R HR HR

6. Decision/Truth Tables D.13 R R R HR HR

7. Formal Methods D.28 - R R HR HR

8. Performance Modelling D.39 - R R HR HR

9. Prototyping/Animation D.43 - R R R R

10. Structure Diagrams D.51 - R R HR HR

11. Sequence Diagrams D.67 R HR HR HR HR

Requirements:

1) A modelling guideline shall be defined and used.

2) At least one of the HR techniques shall be chosen.

 2301

Table A.18 � Performance Testing 2302

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Avalanche/Stress Testing D.3 - R R HR HR

2. Response Timing and Memory Constraints D.45 - HR HR HR HR

3. Performance Requirements D.40 - HR HR HR HR

 2303

Table A.19 � Static Analysis 2304

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Boundary Value Analysis D.4 - R R HR HR

2. Checklists D.7 - R R R R

3. Control Flow Analysis D.8 - HR HR HR HR

4. Data Flow Analysis D.10 - HR HR HR HR

5. Error Guessing D.20 - R R R R

6. Walkthroughs/Design Reviews D.56 HR HR HR HR HR

 2305

42

Model for verification

…

Req_11: …

Req_12: …

Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

verification

43

Software Architecture

In this phase, we produced two kinds of document
- The software architecture ;
- The integration tests specification.

- Software / Software
- Software / Hardware

SA description Int Tests Spec

SRS

44

Component

 - 11 - FprEN 50128:2011

2 Normative references 296

The following referenced documents are indispensable for the application of this document. For dated 297
references, only the edition cited applies. For undated references, the latest edition of the referenced 298
document (including any amendments) applies. 299

 300

EN 50126-1:1999 Railway applications � The specification and demonstration of Reliability, Availability, 301
Maintainability and Safety (RAMS) � Part 1: Basic requirements and generic process 302

EN 50129:2003 Railway applications � Communication, signalling and processing systems � 303
Safety related electronic systems for signalling 304

EN ISO 9000 Quality management systems � Fundamentals and vocabulary (ISO 9000) 305

EN ISO 9001 Quality management systems � Requirements (ISO 9001) 306

ISO/IEC 90003:2004 Software engineering � Guidelines for the application of ISO 9001:2000 to computer 307
software 308

ISO/IEC 9126 series Software engineering � Product quality 309

3 Terms, definitions and abbreviations 310

3.1 Terms and definitions 311

For the purposes of this document, the following terms and definitions apply. 312

3.1.1 313

assessment 314
process of analysis to determine whether software, which may include process, documentation, system, 315
subsystem hardware and/or software components, meets the specified requirements and to form a 316
judgement as to whether the software is fit for its intended purpose. Safety assessment is focused on but not 317
limited to the safety properties of a system 318

3.1.2 319

assessor 320
entity that carries out an assessment 321

3.1.3 322

commercial off-the-shelf (COTS) software 323
software defined by market-driven need, commercially available and whose fitness for purpose has been 324
demonstrated by a broad spectrum of commercial users 325

3.1.4 326

component 327
component is a constituent part of software which has well-defined interfaces and behaviour with respect to 328
the software architecture and design and fulfils the following criteria: 329

� it is designed according to �Components� (see Table A.20); 330

� it covers a specific subset of software requirements; 331

� it is clearly identified and has an independent version inside the configuration management system or is 332
a part of a collection of components (e. g. subsystems) which have an independent version 333

 - 77 - FprEN 50128:2011

Table A.20 � Components 2306

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Information Hiding D.33 - - - - -

2. Information Encapsulation D.33 R HR HR HR HR

3. Parameter Number Limit D.38 R R R R R

4. Fully Defined Interface D.38 R HR HR M M

Requirements:

1) Information Hiding and encapsulation are only highly recommended if there is no general strategy for
data access.

NOTE Technique/measure 4 is for Internal Interfaces.

 2307

Table A.21 � Test Coverage for Code 2308

Test coverage criterion Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Statement D.50 R HR HR HR HR

2. Branch D.50 - R R HR HR

3. Compound Condition D.50 - R R HR HR

4. Data flow D.50 - R R HR HR

5. Path D.50 - R R HR HR

Requirements:

1) For every SIL, a quantified measure of coverage shall be developed for the test undertaken. This can
support the judgment on the confidence gained in testing and the necessity for additional techniques

2) For SIL 3 or 4 test coverage at component level should be measured according to the following:

- 2 and 3; or

- 2 and 4; or

- 5

or test coverage at integration level should be measured according to one or more of 2, 3, 4 or 5.

3) Other test coverage criteria can be used, given that this can be justified. These criteria depend on the
software architecture (see Table A.3) and the programming language (see Table A.15 and Table A.16).

4) Any code which it is not practicable to test shall be demonstrated to be correct using a suitable technique,
e.g. static analysis from Table A.19.

NOTE 1 Statement coverage is automatically achieved by items 2 to 5.

NOTE 2 The test coverage criteria in this table are used for structure-based (code-based, white box) testing.
Techniques/measures for functional (specification-based, black box) testing are given in Table A.14.

NOTE 3 A high percentage of coverage is usually difficult to achieve. The use of test case execution from boundary values
(Clause D.4) and equivalence classes and input partition testing (Clause D.18) can enable a sufficient coverage to be achieved with a
smaller number of tests.

NOTE 4 The difference between 2 and 3 depends in practice on the level of the programming language and the use of compound
conditions. When single conditions are used only, for example as a result of compilation, 2 and 3 are considered identical.

 2309

45

From specification to architecture

…

Req_11: …

Req_12: …

Req_13: …

…

FprEN 50128:2011 - 42 -

� the verification and validation process shall ensure 1396

1) that the pre-existing software fulfils the allocated requirements, 1397

2) that failures of the pre-existing software are detected and the system where the pre-existing 1398
software is integrated into is protected from these failures, 1399

3) that the assumptions about the environment of the pre-existing software are fulfilled. 1400

d) The pre-existing software shall be accompanied by a sufficiently precise (e.g. limited to the used 1401
functions) and complete description (i.e. functions, constraints and evidence). The description shall 1402
include hardware and/or software constraints of which the integrator must be aware and take into 1403
consideration during application. In particular it forms the vehicle for informing the integrator of what the 1404
software was designed for, its properties, behaviour and characteristics. 1405

NOTE Statistical evidence may be used in the validation strategy of the pre-existing software. 1406

7.3.4.8 The use of existing verified software components developed according to this European Standard in 1407
the design is to be preferred wherever possible. 1408

7.3.4.9 Where the software consists of components of different software safety integrity levels then all of the 1409
software components shall be treated as belonging to the highest of these levels unless there is evidence of 1410
independence between the higher software safety integrity level components and the lower software safety 1411
integrity level components. This evidence shall be recorded in the Software Architecture Specification. 1412

7.3.4.10 The Software Architecture Specification shall describe the strategy for the software development to 1413
the extent required by the software safety integrity level. The Software Architecture Specification shall be 1414
expressed and structured in such a way that it is 1415

a) complete, consistent, clear, precise, unequivocal, verifiable, testable, maintainable and feasible, 1416

b) traceable back to the Software Requirements Specification. 1417

7.3.4.11 Measures for handling faults shall be included in the Software Architecture Specification in order to 1418
achieve the balance between the fault avoidance and fault handling strategies. 1419

7.3.4.12 The Software Architecture Specification shall justify that the techniques, measures and tools 1420
chosen form a set which satisfies the Software Requirements Specification at the required software safety 1421
integrity level. 1422

7.3.4.13 The Software Architecture Specification shall take into account the requirements from 8.4.8 when 1423
the software is configured by applications data or algorithms. 1424

7.3.4.14 The Software Architecture Specification shall choose techniques and measures from Table A.3. 1425
The selected combination shall be justified as a set satisfying 4.8 and 4.9. 1426

7.3.4.15 The size and complexity of the developed software architecture shall be balanced. 1427

7.3.4.16 Prototyping may be used in any phase to elicit requirements or to obtain a more detailed view on 1428
requirements and their consequences. 1429

7.3.4.17 Code from a prototype may be used in the target system only if it is demonstrated that the code and 1430
its development and documentation fulfils this European Standard. 1431

7.3.4.18 A Software Interface Specification for all Interfaces between the components of the software and 1432
the boundary of the overall software shall be written, under the responsibility of the Designer, on the basis of 1433
the Software Requirements Specification and the Software Architecture Specification. 1434

Requirement 7.3.4.19 refers to the Software Interface Specification. 1435

E1

E2

S1

E3

S2

I1 I2 I3

E1

E2

S1

E3

S2

I1 I2 I3

46

Architecture

 - 69 - FprEN 50128:2011

Table A.3 � Software Architecture (7.3) 2269

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Defensive Programming D.14 - HR HR HR HR

2. Fault Detection & Diagnosis D.26 - R R HR HR

3. Error Correcting Codes D.19 - - - - -

4. Error Detecting Codes D.19 - R R HR HR

5. Failure Assertion Programming D.24 - R R HR HR

6. Safety Bag Techniques D.47 - R R R R

7. Diverse Programming D.16 - R R HR HR

8. Recovery Block D.44 - R R R R

9. Backward Recovery D.5 - NR NR NR NR

10. Forward Recovery D.30 - NR NR NR NR

11. Retry Fault Recovery Mechanisms D.46 - R R R R

12. Memorising Executed Cases D.36 - R R HR HR

13. Artificial Intelligence � Fault Correction D.1 - NR NR NR NR

14. Dynamic Reconfiguration of software D.17 - NR NR NR NR

15. Software Error Effect Analysis D.25 - R R HR HR

16. Graceful Degradation D.31 - R R HR HR

17. Information Hiding D.33 - - - - -

18. Information Encapsulation D.33 R HR HR HR HR

19. Fully Defined Interface D.38 HR HR HR M M

20. Formal Methods D.28 - R R HR HR

21. Modelling Table
A.17

R R R HR HR

22. Structured Methodology D.52 R HR HR HR HR

23. Modelling supported by computer aided design
and specification tools

Table
A.17

R R R HR HR

Requirements:

1) Approved combinations of techniques for Software Safety Integrity Levels 3 and 4 are as follows:

a) 1, 7, 19, 22 and one from 4, 5, 12 or 21;

b) 1, 4, 19, 22 and one from 2, 5, 12, 15 or 21.

2) Approved combinations of techniques for Software Safety Integrity Levels 1 and 2 are as follows: 1, 19,
22 and one from 2, 4, 5, 7, 12, 15 or 21.

3) Some of these issues may be defined at the system level.

4) Error detecting codes may be used in accordance with the requirements of EN 50159-1 and EN 50159-2.

NOTE Technique/measure 19 is for External Interfaces

 2270

47

Component Design

In this phase, we produced two kinds of document
- The Component description ;
- The Component tests specification.

C Description CTS

SA Description

48

Design

FprEN 50128:2011 - 70 -

Table A.4� Software Design and Implementation (7.4) 2271

TECHNIQUE/MEASURE Ref SIL 0 SIL 1 SIL 2 SIL 3 SIL 4

1. Formal Methods D.28 - R R HR HR

2. Modelling Table
A.17

R HR HR HR HR

3. Structured methodology D.52 R HR HR HR HR

4. Modular Approach D.38 HR M M M M

5. Components Table
A.20

HR HR HR HR HR

6. Design and Coding Standards Table
A.12

HR HR HR M M

7. Analysable Programs D.2 HR HR HR HR HR

8. Strongly Typed Programming Language D.49 R HR HR HR HR

9. Structured Programming D.53 R HR HR HR HR

10. Programming Language Table
A.15

R HR HR HR HR

11. Language Subset D.35 - - - HR HR

12. Object Oriented Programming Table
A.22
D.57

R R R R R

13. Procedural programming D.60 R HR HR HR HR

14. Metaprogramming D.59 R R R R R

Requirements:

1) An approved combination of techniques for Software Safety Integrity Levels 3 and 4 is 4, 5, 6, 8 and one
from 1 or 2.

2) An approved combination of techniques for Software Safety Integrity Levels 1 and 2 is 3, 4, 5, 6 and one
from 8, 9 or 10.

3) Metaprogramming shall be restricted to the production of the code of the software source before
compilation.

 2272

Manual code vs code generation

int xx;

main ()

{

…

}

int xx;

main ()

{

…

}

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

Algorithms

Description

Pseudo-programming

If (xx) then …

Formal method used

At specification level :

•Model(s) for verification of the completness and

coherency

At architecture level :

•To introduce the architecture

•For the allocation of the requirement

At composant design:

•To introduce the algorithm, the data management, etc.

•For the verification of the requirement

Examples of used

51

From specification to code

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

int xx;
main ()

{
…

}

Proof replaced

 - component testing

 - software integration testing

Overall software testing

Many application

 - B-method

 - SCADE

CBTC

ERTMS

Train control

…

From specification to code

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

int xx;
main ()

{
…

}

Simulation on model replaced

 - component testing

 - software integration testing

Overall software testing on target

Many application

 - SCADE

 - Control-build

CBTC

ERTMS

TCMS

Traction/braking unit

Verification of safety requirement

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

In addition to the overall software tests, we verified that some safety

requirement identify at system level are respected by the software in a

system environnement

Many application

 - SCADE

 - Prover

 - B-event

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

Signaling system

CBTC

Proof on the code

…
Req_11: …

Req_12: …
Req_13: …

…

E1

E2

S1

E3

S2

I1 I2 I3

int xx;
main ()

{
…

}

Overall software testing

- POLYSPACE

Signaling system

Unit testing

S/S Integration testing

H/S integration testing

Verification of RTE

Properties verification by proof With Pre/Post

Proof for Data

56

Generic

Application

DATA

- Id

- Family

- Format

- Unit

- …

Processus for DATA

generation

DATA

- Id

- Family

- Format

- Unit

- …

Verification

by proof

specify
Generate

properties

extract

Commercial tools : Atelier B, Provers certifier

Open source tools : rodin, ProB,

Specifics tools : OVIP, OVADO

Formal method used

Projet Onboard Equipment Sol Date

SAET-METEOR atelier B Atelier B + OVIP 1998

ERTMS mode SCADE 1999

….

VAL-CdG (2 lines) Atelier B Atelier B 2007

OCTYS L3 Atelier B SCADE–Proof Toolkit

 (Siemens) (Ansaldo STS) 2009

PAING SCADE (ALSTOM) 2011

SAET L1 Atelier B Atelier B

 (Siemens) (Siemens) 2011

OURAGAN L13 SCADE SCADE + OVADO

 (Thales RSS) (Thales RSS) 2013

OCTYS L5 SCADE Atelier B

 (Areva-TA) (Siemens) 2011

PMI L1, L12, L8, .. N.A. SCADE–Proof Toolkit 2009 ; 2010

 (Thales)

LYON SCADE 5 SCADE6 + Atelier B + CB -

 (AREVA) (AREVA)

Tractions Applications (many, many applications)

 MI09 CB (ALSTOM) 2012, 2013

 REGIOLIS CB (ALSTOM) 2013, 2014

Difficulties to fullfill the 50128

1. Documents production

• How I produce a document ?

• What is the content of the document ?

• What is the information I need to introduce if I want to

maintain my software during 40 years ?

• A copy of the model ? More ?

• The model can replace the documentation ?

2. Complexity management

• What is a complexity metric for a drawing ?

1. Requirement Management from system to code.

Difficulties to fullfil the 50128

4. Tests management

• What is a component test ?

• Tests on code ?

• Tests on model ?

• How I measure the coverage ?

• Link between measure on code and measure on model

• What is the coverage of the formal analysis ?

• How combine the formal analysis and the test ?

• If proof replace test, the tests coverage is replaced by

properties coverage ?

• How I can guarantee that the set of properties cover all

my model ?

• How I do the integration test ?

• S/S : simulation, proof, tests

• How I prepare the overall tests software ?

• On the model and after on the target ?

Difficulties to fullfil the 50128

5. Competence management

• Tools, technics, …

6. Tools qualification

61 61

	

	 	 	 	

	
	

