
Engineering Reliability:
How to build reliable large-scale
services

2014

Seongbae Park
Site Reliability Engineering

Who am I ?
2014 - now Google, SRE, Identity
2008 - 2014 Google, SRE, Websearch
2006 - 2008 Google, compiler optimization
1999 - 2006 Sun Microsystems, compiler optimization

Technical Lead, Search SRE

Presenter
Presentation Notes
제 소개를 간단하게 하면,
지금은 구글의 user account와 login, password 등을 담당하는 identity 팀에서 일하고 있고, 지난 6년 동안은 구글의 검색 팀에서 site reliability engineer로 일했습니다. 그 전에 2006년에서 2008년까지는 구글 컴파일러 팀에서 컴파일러 최적화일을 하였고, 그 동안 Free Software Foundation의 GCC 프로젝트의 maintainer로 일하였습니다. 그 이전에는 Sun Microsystems의 컴파일러 팀에서 7년간 일했습니다.

What is
Site Reliability Engineering?

Presenter
Presentation Notes
많은 분들이 Site Reliability Engineering이라는 말을 처음 들어 보셨을 겁니다. 오늘은 짧은 시간이지만 제가 Site Reliability가 무었이고, 왜 그러한 조직이 있으며, 어떤 일을 하는지 설명드리겠습니다.

Site Reliability Engineering (SRE)
● Separate organization from the software engineering organization
● Tasked with maintaining Google's reliability
● Users expect Google to be always up and fast

o ... and we try to fulfill that expectation
● Maximize the rate at which new features and new products can be

delivered to our users
o without breaking the Google

Presenter
Presentation Notes
Site Reliability Engineering은 순수한 개발을 담당하는 부서와 별도로 구성된 조직입니다. SRE의 목표는 사용자들이 구글의 항상 잘 사용할 수 있게 하는 것입니다. 구글의 사용자들은 전 세계에 퍼져있습니다. 그 사용자분들은 모두, 구글이 언제 어디서나 본인들이 원하는 때에 작동하기를 원하고 필요로 합니다. SRE의 목표는 그러한 사용자들의 기대에 부응하는 것이지요.
보통 개발자들의 목표가 새로운 기능을 계속해서 개발하는 것입니다. 그렇게 새로운 기능들이 만들어 질 때 마다 문제를 일으킬 가능성도 같이 커집니다. SRE의 목표는 그 새로운 기능들과 이전의 기능들이 계속해서 잘 작동할 수 있게 하는 데 있습니다.

Serve request

reliably
quickly
cheaply

(Pick all three.)

Presenter
Presentation Notes
SRE의 목표를 한 문장으로 요약하자면, Serve request reliably, quickly and cheaply 입니다.

Organizational Reliability

Presenter
Presentation Notes
reliable service를 유지하기 위해서는 기술적인 것들도 매우 중요하지만, 그에 못지 않게 조직의 문화도 매우 중요합니다. 1999년에 대한항공 화물기가 추락했을 때 추락 원인 중의 하나로 기장과 부기장및 다른 승무원들과의 문화적인 점을 지적했습니다. 1986년 space shuttle Challenger가 추락했을때도 근본 원인중의 하나로 NASA의 organizational culture를 지적했지요. SRE 조직의 근본적인 존재 이유중 하나가 그러한 조직문화를 유지하기 위한 것입니다.

Organizational Incentive
● Humans and organizations optimize for their own incentive.
● No change means best reliability.
● Trade-off between reliability vs speed of change
● Trade-off between cost vs speed of change
● Trade-off between cost vs performance
● Trade-off between engineering complexity vs reliability
● Trade-off between human operator vs automation

Presenter
Presentation Notes
사람이나 조직은, 각자 자기에게 가장 유리한 방향으로 나아가게 됩니다. 그러니 어떻게 incentive를 정하느냐가 매우 중요합니다.
앞에서 말씀드린 것 처럼, 보통 개발자들은 최대한 빠르게 새로운 기능들을 개발해서 사용할 수 있게 만드는 데 있습니다. 그리고 개발자들은, 얼마나 좋은 기능을 빨리 만들어 내느냐를 첫번째 기준으로 평가됩니다. 그러니, 조금 문제가 있더라도 큰 문제가 아니라고 생각되면 시간에 맞춰서 빨리 새 기능을 혹은 새 제품을 release하는 것을 우선시 하게 됩니다.

Site Reliability Engineering 조직은 이런 빠른 개발 문화의 counter balancing을 하는 기능을 합니다. 그렇지만 저희의 “reliability”는 단순히 사이트가 항상 동작한다는 뜻만은 아닙니다. 저희의 목표는 reliability, 개발 속도, 비용, 성능, engineering complexity, human cost 사이에서 적절한 trade-off point를 찾는데 있습니다.

Service Level Agreement
● A measurable metric

o e.g. 99.99% of requests successful within 1 seconds over the quarter.
o 99.999% of requests successful within 50ms over the quarter.

● Development team and Site Reliability team agrees *beforehand*.
● The rest is considered “failure budget”.

o 99.99% service, with 100M daily queries, over a quarter
=> 900,000 queries can fail over the quarter

● Measured and tracked all the time.

Presenter
Presentation Notes
그러한 trade-off는 SRE만의 결정이 아니라 사실은 회사 전체의 결정이지요. 이런 trade-off의 반영이 service level agreement, 줄여서 SLA 입니다.
 개발 팀과 SRE 팀 사이에서 이 서비스는 어느정도의 성능과 어느정도의 availability를 목표로 하는 지를 정하고, 이 정한 기준을 가지고 모든 결정을 하는 기준으로 삼습니다. SLA는 항상 측정 가능해야 합니다.
SLA의 예를 들자만, quarter, 그러니가 3개월 동안에 전체 request중에 99.99%를 1초 안에 성공적으로 처리해야 한다는 것이 SLA의 예가 될 수 있겠지요.

이렇게 SLA를 정하고 나면 나머지는 failure budget이 됩니다. 즉, 3개월 동안 0.01% request는 실패를 해도 문제를 삼지 않겠다는 뜻이지요.

이렇게 SLA와 failure budget을 정하게 되면 이를 기준으로 앞에서 말씀드린 여러가지 trade-off들을 결정하는 데 기준으로 삼게 됩니다.

Incident Managment
● Incident Management Framework

o Command
o Operate
o Communicate

● Temporary
● Incident Commander

o Operations Lead
 Typically oncaller who handles the page

o Communications Lead
o Planning/Status Lead

Presenter
Presentation Notes
항상 SRE의 첫번째 목표는 prevention, 즉 문제가 생기는 것을 예방하는 것입니다만, 사고는 언제 어디서든 생길 수 있지요. 따라서 사고가 발생했을 때 어떻게 빠르게 사고에 대응하고 대처하는냐가 매우 중요합니다.

websearch나 gmail같은 구글의 중요한 서비스들은 모두 24시간 대기하는 oncall이 있습니다. SRE들이 oncall이지요. oncall들은 문제가 발생하면 문제를 끝까지 해결해야 하는 책임이 있습니다. 많은 경우의 문제들은 oncaller 혼자서 빠르게 mitigation을 할 수 있지만, 그럴 수 없는 큰 문제가 발생하기도 합니다. 그런 큰 문제가 발생하게 되면, 당연하게도 많은 사람이 필요하게 됩니다. 이런 경우에는 미국의 소방관들과 응급구급 시스템이 사용하는 Incident Command System을 본따서 만든 incident management process를 발동하게 됩니다.

Incident management system에서는 크게 4가지 필요한 역할이 있습니다. 먼저 operations lead 는 실제로 문제를 조사하고 고치는 일의 책임을 맡은 사람으로, 대부분의 경우 oncaller가 이 역할을 맡게 됩니다. Operations Lead 는 기술적인 내용을 자세히 잘 알고 있는 사람이어야 하지요. Operations lead가 상세한 자세한 내용을 조사하고 쳐다보는 사람이라면, incident commander는 전체적인 큰 그림을 쳐다보는 사람입니다. 이 사고의 영향으로 다른 팀이나 서비스의 영향이 있을지, operations lead가 일하는 데 필요한 것이 있는지들을 살펴야 하고, 무엇보다 Incident Management system이 잘 동작하도록 필요한 사람들에게 역할을 담당해주는 일을 합니다. 필요에 따라서 incident commander가 직접 communications lead를 맡기도 하고, 필요하면 다른 사람에게 communications lead를 맡기기도 합니다.

Communications lead는 회사 내외의 여러 사람들에게 현재 상황을 알리고, 외부에서 필요한 정보들을 operations team으로 부터 알아내는 역할을 담당합니다. Operations lead는 문제 해결에 집중을 해야 하다 보니 다른 팀과 communication을 하는 것에 많은 시간을 소모하기가 힘들 수 있습니다. 그럴 때 communications lead가 communication 을 담당해서 operation lead 가 사고 해결에 집중할 수 있게 해 주는 것이지요.

사고 해결이 길어지고 필요한 사람과 resource 가 많아지면, 여러가지 logistic 문제가 발생합니다. 이런 일들을 담당하는 것이 planning/status lead 입니다.

Postmortem
● Any events with (potential or real) big impact, or high complexity

o A summary of the events
o A full timeline of the problem - all factual information

 background, contributing factors, how it was discovered, mitigated, fixed
o User Impact
o A root cause
o What worked and what didn’t

The goal of postmortem is to learn and improve, not to assign blame.
All human mistakes need to be captured accurately, and management
does not blame mistakes. Focuses on how to prevent similar
occurrence in all problems in the same class of problems.

Presenter
Presentation Notes
사고가 발생하고 나면 첫번째 우선 순위는 사고를 해결하는 것이지만, 일단 해결이 되고 나면 그 다음으로 중요한 것은 그러한 종류의 사고가 다시 나지 않도록 예방하는 것입니다.

Training
● Wheel of Misfortune

o Simulated incident management
o Actual or imagined incidents

● Annual large-scale disaster test
o Simulated or actual

● Emergency drills

It’s All About Scale

Anatomy of large-scale web service

● Suppose you just wrote a web
service

● It's running on a server with a
MySQL db behind it

● You can point your web browser to
it

● That means you're done, right?

● Right?

It compiles, so it must work!

Presenter
Presentation Notes
The Point: Simple service serving out of your dorm is simple.

Lets pretend it is Reddit, a relatively simple commenting system.

Web server

Database

Presenter
Presentation Notes
The Point: Simple services are simple box diagrams

Scale the number of users

● Now imagine your web application has to serve
100,000,000 users from around the world

● What needs to change?

Presenter
Presentation Notes
100 million, 1억명

What does 100M users mean

100M
users

10B request
per day

200K QPS Average

200K QPS Peak

2M disk seeks per second

100K QPS
Average

10B request
per day

100M
users

Presenter
Presentation Notes
1억명의 사용자가, 하루에 평균 10번씩 서비스를 사용하고, 한번 사용할때마다 request가 10개씩 필요하다고 하면 - javascript, image, 기타등등, 평균적으로 10만 qps - queries per second - 를 처리해야 합니다. 거기다 Query 하나를 처리하는데 평균 10 disk seek이 필요하다고 하면, 200k qps를 처리하려면 2M disk seek, 그러니까 2백만 disk seeks per second가 필요합니다.

Lots of servers

20 M disk Seeks

20,000 disks
833 servers
(24 disk each)

Vertical stack of
servers 150m
high.

Draws the power
of about 900
homes.

~100억원 From
Dell.

Presenter
Presentation Notes
Disk 하나당 초당 10 seek를 처리할 수 있으니까, 초당 2천만 disk seek을 처리하려면 20개의 디스크 가 필요합니다. 예를들어 24개의 디스크를 장착할 수 있는 Dell R920 서버를 사용한다고 하면 833대의 서버가 필요하지요.

Dell R920 24 disks per server, 7” high

Web server
Web server

Web server

Web server

Database

Web server

Database
Database

Database

Database

Presenter
Presentation Notes
The Point: A scaled simple service is a lot of boxes

Aaand they all talk to each other; the number of arrows gets unwieldy,
so for simplicity's sake we'll just pretend it's one box for the web servers and one box for the database servers.

Web servers

Database
servers

Presenter
Presentation Notes
So for simplicity's sake we'll just pretend it's one box for the web servers and one box for the database servers.

Scale the amount of data

● Now imagine your web application has to serve 1000x
amount of data.

● What needs to change?

Web server

Database server
1000x size disk / ram ?

Presenter
Presentation Notes
You can’t scale up a single machine by 1000x. Even if you can (e.g. storage), it will be slow - 100-1000x slower.

Database

Web server

Database
Database

Database
1/1000

Database
1000/1000

Presenter
Presentation Notes
The Point: No single box can serve all data, and can scale enough.
The data is sharded - provides both data capacity, and latency improvements - due to parallelism.
Makes certain problem more difficult - different kind of consistency trade-off.

Scale the amount of code / engineers

● Now imagine your web application has 100x features,
with 100x people working on it.

● What needs to change?

Web servers
100x code

Database
servers

Presenter
Presentation Notes
All features in “web servers”.
Any crash bug in the webserver is debastating - it will crash everything.
Performance goes down.
Release gets slow.
Management becomes difficult. Can’t make changes quickly - speed of development is important.
Some features are not as critical - if it works 99% of time, it’s ok. Homepage not serving ? New york times news.

Server

Server Server Server

Server Server

Server Server Server

Server Server

Presenter
Presentation Notes
Occasionally they also talk to themselves. When they get lonely.

Presenter
Presentation Notes
Now we're going to need more space, so let's compress this a little.

Spread traffic to 10000 servers?
● Don't want to publish 10000 IP addresses to the world

o IP addresses are scarce and expensive
● Need a frontend loadbalancer to map few IP addresses to a lot of

backend servers

Presenter
Presentation Notes
SREs look after the loadbalancers, configure them, upgrade them,

Presenter
Presentation Notes
Now we're going to need more space, so let's compress this a little.

load balancer

Presenter
Presentation Notes
So the loadbalancer will funnel all traffic to our servers.

load balancer

load balancer

Presenter
Presentation Notes
Sometimes you will have more than one loadbalancer.

Clients to our loadbalancers
● Clients find frontend loadbalancers via DNS
● Need a DNS server as well

Presenter
Presentation Notes
Terminates TCP connection.
Loadbalancer has capacity too.

load balancer

Presenter
Presentation Notes
So the loadbalancer will funnel all traffic to our servers.

load balancer DNS server

Scale across the world
● Users in all continents, geographies.
● Earth is big. Speed of light isn’t infinite.
● RTT across

o Pacific: 125 ms.
o Atlantic: 90 ms.
o North America and South America: 120 ms.
o Sidney to Taiwain: 100 ms.
o US west coast to east coast: 80ms.

Presenter
Presentation Notes
We need to be in several datacenters, hopefully in different regions of the world.

Get traffic to the right datacenter?
● Now we have a new problem
● Figure out where the user is
● Send them to the closest datacenter

o we don't want to send a user in Japan to a datacenter in Europe if we
have free capacity in Japan

● "geographic loadbalancing"

DNS

Presenter
Presentation Notes
We need to be in several datacenters, hopefully in different regions of the world.

Presenter
Presentation Notes
So the loadbalancer will funnel all traffic to our servers.

Failure always happens

Failure also scales :(
● 100k separate servers
● Any one problem is a needle in a haystack
● Human can’t keep an eye on all of them, nor act on them

● System has to self-monitor and self-heal
● Debugging and maintenance become a data analysis / data

science problem
● Monitoring to figure out what the servers are doing

o How loaded are they?
o When are they getting overloaded?
o How many requests are they handling?
o Are they providing the functionality we expect?
o What problems are happening ?
o How are users being affected ?

DNS server

monitoring

load balancer

Presenter
Presentation Notes
So the loadbalancer will funnel all traffic to our servers.

Everything can fail
Murphy's Law:

Anything that can go wrong, will go wrong.

● Things that fail:

o hard drives, memory, cpu, network card, flash memory
o power supplies
o switches
o routers
o fibre lines
o power substations
o any software system (firmware, bios, kernel, os, application)

● Deal with all of these scenarios and beyond

Presenter
Presentation Notes
“Everything” really means “everything”.
And failure can be in many different ways.

Failures at Scale

“In Computer Science, the rare event always
happens, and the impossible happens
occasionally.”

● Suppose 5% failure in 5 years in *one* component.

100k machines means 5k failures. 2.7 per day.
● There’s ~10-50 such components. Failure happens always.
● Bathtub curve

Redundancy
● Traditional approach to reliability: If outage of one component

causes problems, use two of the same and hope they don't fail at
the same time.

● Applicable to a lot of problems: redundant power supplies, drives
(RAID), networking (redundant switches, routers etc.)

● Redundancy is expensive, typically 2x
● Holistic approach:

o Optimize total reliability of service globally

Double failures
Finagle's Law of Dynamic Negatives:

Anything that can go wrong, will -- at the worst possible moment.

● Thanks to scale, double failures are not rare.
● Defense in depth.
● N + 2

Presenter
Presentation Notes
If the reliability of any one “thing” is 99% (87 hours a year), two things failing at the same time is 99.99% (52 minutes a year), and three is 99.9999% (30 seconds a year). At 6 9s, nobody can notice (other infrastructures and devices are less reliable).

Failure domain: Machine
● Example: PSU MTBF is 100,000 hours

o 100,000 machines mean one PSU will fail every 1 hours
● Machine failure symptoms

o A single machine suddenly goes offline
o Or gets slow
o Or starts corrupting packets
o Or ... (insert any known symptom here)

● Action: get traffic away from the failing machine
o and get somebody to repair the machine

● If the affected machine holds any data, need to make sure that data
is also available somewhere else.

Presenter
Presentation Notes
Hard disk drive fails all the time, due to mechanical wear and tear. Controller develops defect, causing data corruption, slowness.
Beware of bathtub curb.
CPUs can develop all kinds of defects - bad memory controller leading to corrupted data read, bad cache slowing down, bad ALU causing bad results, design defect that occurs rarely.
Correctable ECC errors happen continuously thanks to cosmic ray. Uncorrectable errors happen occasionally.

Rack-level batteries - to allow quick safe shutdown (for data protection), not to sustain operation. There is some batteries that will fail. Some machines will not restart upon power cycle.

Network interface cards can fail completely, or intermittently drop packets, or intermittently/continuously corrupt packets. At high enough rate, some of those will cause corruption that will defeat the checksum at the tcp/ip level.

Some SATA cards have a failure mode of catching fire :)

Failure domain: Switch
● Symptom: dozens of machines connected to one switch go offline

at the same time
● Action: get traffic away from affected machines

o And get someone to replace the switch
● If those machines hold any data

o And the other location of that data is on the same switch
o Congratulations, you've just lost actual data

Presenter
Presentation Notes
A single port (at the fabric, or at the top of the rack) can go bad - loose connection, blown capacitor, low intermittent errors.
A single switch can go bad (at the edge, or in the middle of the fabric). Some can be worked around (fabric self-healing). Some can have redundancy (rack switch uplinks). Some may be a single point of failure.

Failure domain: Datacenter
● Some failure modes can take out entire datacenters

o power outage (across two separate utility power suppliers)
o hurricanes
o flooding
o earthquakes
o …

● Happen very rarely, but are the hardest to deal with
● Being in just one region/country of the world is not enough
● Need geographic diversity
● Careful when choosing a site

Presenter
Presentation Notes
Cooling:
Cooling system failure causing fire alarm to go off and Halon gas (toxic).

Fiber:
Gypsies in Netherland stealing copper “accidentally” cutting fiber.
Duck hunters in Oregon shooting fiber junction box requiring excursion into snow-capped mountain to fix.
Earthquake in Taiwan cutting multiple fibers into the country due to all of them going through the same ocean trench.
Atlanta gets hot enough to heat up the ground to melt the shielding of underground cable, causing shorts.
We require all our datacenters to have redundant, physically separate network connectivity - exits from the building through different parts of the building, served by different ISPs. Landslide in Hongkong took down multiple fibers (from different ISPs) going through the same hill.

Power:
Heron (백로? 해오라기?) in South Carolina creating a short in power station.
Rabbits chewing through power lines.
In South Carolina, 2M long snake causing a short on 100KV breaker, causing ceramics to explode.
Local news van, after broadcast, drives without lowering the antenna, hitting the power line.
Lightning strikes local power station.

Failure domain: Software System
● Some software systems are global singleton by its nature

o DNS assignment
o Top-level loadbalancing system
o Global master election system
o BGP / routing

● Happens very rarely, but impact is almost always global

Presenter
Presentation Notes
2009 Malware outage - bad data push

2012 Global routing outage (LPP) - bad routing information causing global traffic sinkhole

Deal with failure: Divert traffic away
● First we wanted to get traffic to our machines
● Now we want to get it away again!

o Because machines fail
● Need to figure out when to divert traffic away

o Monitoring
● Can use the same mechanisms that we used for getting traffic to

machines
o see previous slides about loadbalancing

Presenter
Presentation Notes
As automatic as possible, without causing bigger problem.
Retry.

Disaster Recovery
● Some failures are “disasters”
● Examples

o One of your major datacenters burns down
o A software bug silently corrupts your data over the course of months

● Not an option: "oops, we didn't think of that"
● Prepare emergency scenarios

o how to bring up your service somewhere else when the datacenter
burns down

o how to get your data back when it gets corrupted or lost
o offsite backups

Presenter
Presentation Notes
“disasters” - meaning, system can not recover by itself and you can’t hide the failures by redundancy.

The great gmail loss (due to a very ”simple” bug in the code regarding missing pointer dereference in C++) outage.

Beware of mitigation

Cascading failure: Overload
● Even with careful planning, you can and will run out of capacity,

globally or locally
● Many systems don’t deal with overload condition well

o queueing delay shoot through the roof - cpu, network, hard disk
o backed-up requests pile up in memory

 blowing up cache, slowing system down
 possible out of memory

o network gets saturated, starts dropping packets, tcp retries…
o modern cpus overheat, kicking thermal throttling

● If one cluster gets overloaded and fails, global loadbalancing
system may divert all that traffic to the next cluster, which knocks it
over, rinse&repeat

Presenter
Presentation Notes
Amazon EC2 outage. One node went down. The traffic flowed to the redundant system, which couldn’t handle the load, knocking it over, repeat.

The great Gmail outage - knocked over the second layer of loadbalancers, cascading through all second level loadbalancers.

The first defense: Over provisioning. Very costly. Doesn’t help in some situations.

Cascading failure: Crash
● Imagine a crash bug in the software not caught during testing

o can be triggered by user action (“query of death”)
o can be triggered by some state change at the service

● Users unaware of such problems can repeatedly attempt to use the
service, killing the servers

● When a datacenter failures, loadbalancer will fail over to the next
cluster, the user (or users) tries again, knock it over, repeat.

Presenter
Presentation Notes
On twitter “look, I get error page from google if I search this query”. Then picked up by some tech news website. Everyone searching for the same query, causing many crashes.

Self query-of-death detection and prevention.
Manual block.
Automatic failover prevention.

See change management for later.

Cascading failure: Self-protection
● Graceful degradation
● Adaptive self-protection mechanism

o against running out of memory, cpu, disk, network
● Feedback loop creating oscillation

Presenter
Presentation Notes
Graceful degradation -
track memory usage and regulate internally,
drop lower priority requests,
drop overload portion of traffic,
carefully design where retries happen,
optimize placement of different servers to maximize network throughput,
container - compartmentalize all resources, integrate thermal throttling with loadbalancing.

Scale begats problems

Long tail latency
● A single machine can’t handle all data, nor can it do fast enough.
● “Shard” the data - divide it across N machines.

o Parallelize the access.
● Buffering at NIC, switch, packet loss, kernel thread scheduling,

context switch overhead, thread migration, mutex contention, cache
miss, TLB miss, queueing delay, imperfect loadbalancing

● As N goes up, 90th, 99th, 99.9th latency go up dramatically
o But we want 99.99% success within X ms !

Control tail latency
● Drop slow machine

o When you don’t need all data, don’t wait for the slowest X %.
● Replicate data

o Try all replicas, and pick the fastest.
o Hedge: Try one replica, wait Y ms, try another replica, repeat.

● Adaptive loadbalancing
o Slower machines get less requests

● Internal timeslicing
● Multiple queues
● Avoid network hotspots
● Cache at multiple layers

Too much success
● More users are better
● But too much of a good thing can be a problem
● Need to plan for launch spikes

o fuelled by press releases, TV news coverage, blog posts etc.
o or by external events (hurricanes, olympic games,...)

● How do you plan for too much success?
o borrow machines from somewhere (or purchase time on virtual

machines, eg. Amazon EC2 or Google Compute Engine)
o turn off non-essential functionality and repurpose the machines that

supported it
o deliver degraded results (eg. switch to a cheaper algorithm)
o limit sign-ups

Presenter
Presentation Notes
Michael Jackson dies.
German game show.
Facebook goes down.
Android Market launch. Homepage promo for a youtube video.

Can also mention invitations here as a method to prevent "too much success".

Change management
● Downtime is not an option

o Google services are global, thus need to be always up.
o There is no "scheduled maintenance" for most services.

● Make all changes "in flight"
● Or, take a fraction of the service down

o but that means you lose redundancy
o and that means you need more redundancy to start out with

● Think about compatibility
o some fraction of servers might have a change
o others might not
o they still need to talk with each other
o and users need to be able to talk to either the old or the new server
o backwards and forwards compatibility needs careful planning in

advance

Presenter
Presentation Notes
Recent Microsoft Azure outage.

Human reliability

Business continuity
● Also called the "bus factor"

o can you continue running your business if person X gets run over by a
bus?

● New people join the team, old-timers leave
● Everybody needs to do their share of emergency response
● Make the systems easy and safe to use

o even if you don't understand 100% of their ins and outs
● Document the rest

Human mistakes
● Most outages are due to human mistakes or human triggered
● Typo, misleading commands, UI problems
● Design all controls with human mistakes in mind
● In-line documentations are effective. Separate documentations are

not.
● Wide communication as early as reasonably possible
● Quick revert
● Blameless postmortem culture

Conclusion
● Failures are difficult to engineer against but not impossible.
● Scale brings its own challenges.
● Careful planning and design choices can go a long way.

Presenter
Presentation Notes
... but somebody needs to do that work, and that somebody tends to be SRE.

Questions?

	Slide Number 1
	Who am I ?
	Slide Number 3
	Site Reliability Engineering (SRE)
	Slide Number 5
	Slide Number 6
	Organizational Incentive
	Service Level Agreement
	Incident Managment
	Postmortem
	Training
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Spread traffic to 10000 servers?
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Clients to our loadbalancers
	Slide Number 32
	Slide Number 33
	Scale across the world
	Slide Number 35
	Get traffic to the right datacenter?
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Failure also scales :(
	Slide Number 41
	Everything can fail
	Failures at Scale
	Redundancy
	Double failures
	Failure domain: Machine
	Failure domain: Switch
	Slide Number 48
	Failure domain: Datacenter
	Failure domain: Software System
	Deal with failure: Divert traffic away
	Disaster Recovery
	Slide Number 53
	Cascading failure: Overload
	Cascading failure: Crash
	Cascading failure: Self-protection
	Slide Number 57
	Long tail latency
	Control tail latency
	Too much success
	Change management
	Slide Number 62
	Business continuity
	Human mistakes
	Conclusion
	Slide Number 66

