마이크로마케팅 시대, 추천 시스템의 패러다임 변화
- 추천 시스템은 일반적으로 인기 있는 물건에 대한 추천 뿐 아니라, 마이크로마케팅 시대에 맞게 개인별, 개인이 속한 커뮤니티 그룹별, 제품 기능별 맞춤화된 “알려지지 않은 물건”에 대한 추천이 가능토록 진화
-
- ① 단순히 관련성(relevance)을 점수화하여 추정하고 추천 리스트를 도출
-
- ② 사용자 프로파일과 컨텍스트 요소를 고려하여 관련성(relevance) 점수에 따른 추천 리스트를 도출
-
- ③ 사용자 프로파일과 컨텍스트 요소를 고려할 뿐 아니라, 커뮤니티 데이터를 수집하여 같은 부류의 사람들이 선호하는 항목의 정보를 뽑아내고, 관련성(relevance) 점수에 따른 추천 리스트를 도출
-
- ④ 사용자 프로파일과 컨텍스트 요소를 고려할 뿐 아니라, 제품의 기능 데이터를 수집하여 사용자가 선호하는 기능의 정보를 뽑아내고, 관련성(relevance) 점수에 따른 추천 리스트를 도출
-
- ⑤ 사용자 프로파일과 컨텍스트 요소를 고려할 뿐 아니라, 제품의 기능 데이터를 수집하고 지식 모형에 기반하여 사용자의 필요에 맞는 기능과 물건의 정보를 뽑아내고, 관련성(relevance) 점수에 따른 추천 리스트를 도출
-
- ⑥ 사용자 프로파일과 컨텍스트 요소를 고려할 뿐 아니라, 커뮤니티 데이터와 제품의 기능 데이터를 수집하고 지식 모형에 기반하여 사용자의 필요에 맞는 기능과 물건의 정보를 뽑아내고, 추천 리스트를 도출하는 하이브리드 방식
-