SPRi Brain
안성원
AI정책연구실
안성원실장
031-739-7390
연구성과물
  • 요약문 1. 제 목 : 2023년 국내외 인공지능 산업 동향 연구 2. 연구 목적 및 필요성 ㅇ 생성AI 기술이 전세계적 이슈로 부상 - 2022년 11월 등장한 오픈AI社의 챗GPT(ChatGPT) 이후 인공지능 기술이 다시 한 번 역사적 변곡점을 맞이하면서 급성장 - 관련 하드웨어, 서비스 개발에 대한 투자뿐만아니라 전산업에서 AI융합이 본격화되고 있으며 글로벌 빅테크를 중심으로 한 주도권 경쟁이 치열해 지고 있는 상황 - 한편, 확률적 산출물 조합에 기반한 생성AI 기술의 한계, 생성물의 오남요에 따른 사회적 부작용 등 AI에 대한 국제사회의 규제 움직임도 점차 가시화 - 이에, 알파고(AlphaGo)이후 2010년 중반부터 급격히 진행되고 있는 인공지능 기술의 진화와 함께 사회적, 제도적 추이를 지속적으로 파악하여 시의성 있게 대응하는 정책적 민첩성의 요구도 높아짐 ㅇ 본 연구는 급변하는 국내외 인공지능 산업 동향을 파악하여 국내 산업 경쟁력 강화와 인공지능 활용 확산을 위한 정책 자료를 확보하는 것이 기본 목표 - 주요국, 기관, 학술단체, 주요 기업의 동향을 파악하여 현황을 진단하고, 향후 AI 기술의 발전과 산업을 전망하여 시의적절한 AI 정책을 개발하고 의사결정을 지원할 수 있도록 기초 자료 제공 및 정책 과제 발굴에 활용 - 인공지능 산업 관련 광범위한 조사를 바탕으로 국내외 AI 정책 관련 유용한 자료(정책, 법률, 권고사항 등)을 확보하여 정책 고도화에 활용 3. 연구의 구성 및 범위 ㅇ 인공지능 산업 현황 및 시장에 대한 개괄적 정리 ㅇ 국내 및 해외 주요국·국제 기구 정책 동향 - 주요국에는 미국, 유럽, 중국, 일본, 영국, 캐나다, 독일, 프랑스, 싱가포르 포함 - 국제 기구/회의로 OECD, UN/UNESCO, G7정상회의, 세계경제포럼(WEF) 동향 분석 ㅇ 국내외 인공지능 주요 기업 동향 분석 - 해외 글로벌 빅테크(구글, 마이크로소프트, 메타, 아마존, 오픈AI, 애플, 테슬라 등) 기업 및 국내 주요 기업 (네이버, 카카오)을 포함한 주요 AI 스타트업 동향 포함 ㅇ 국제 학술 단체 연구, 표준기관, 비영리 연구 기관 동향 분석 - IEEE, ACM 및 최상위 AI 컨퍼런스 발표 및 ISO/EC 국제 표준화 동향 - 국내 TTA 인공지능 표준화 동향 및 관련 인공지능 학회 주요 연구 동향 ㅇ 인공지능 교육 및 고용, 인력 개발 관련 동향 분석 4. 연구 내용 및 결과 ㅇ 주요국 및 국제기관에서는 생성AI 관련 규범 정립 및 규제 추진 - 미국은 인공지능 청사진 마련, 신뢰성 있는 AI 개발을 위한 행정명령, 유럽은 인공지능법안 통과, 중국의 생성 AI 지침 마련, G7의 AI행동강령, 일본은 생성 AI 저작권 지침 수립 및 국내에서는 인공지능 기본법 제정 추진 ㅇ 생성AI의 핵심 기술 개발 및 관련 서비스 생태계에서 경쟁력 우위 확보를 위해 주요 기업들은 가치사슬의 수직 통합화를 가속화 - 마이크로소프트, 구글, 메타, 아마존, 엔비디아 등 주요기업들은 인수합병, 전략적 투자를 통해 인공지능 반도체, 클라우드, AI플랫폼(모델), 애플리케이션에 이르는 인공지능 가치사슬의 수직통합화를 통한 경쟁력 강화 ㅇ 생성AI 모델의 고도화, 경량화와 함께 인공지능 신뢰성 확보 연구 확대 - 대규모 컴퓨팅 인프라 투자를 통해 거대언어모델 성능 경쟁을 펼치는 추세에서 비용 효과적인 경량 모델, 오픈소스 활용 움직임이 확대되고 있음 - 특히 생성물의 부정확성, 오류, 환각 현상, 잠재적 편향성 등 신뢰성 문제가 대두됨에 따라 이를 보완하거나 최소화 하기 위한 기술적, 정책적 대응 강화 5. 정책적 활용 내용 ㅇ 본 연구 내용은 정부의 인공지능 정책 수립 (초거대 인공지능 경쟁력 강화, 전국민 인공지능 일상화 전략 등) 및 관련 법안 마련 (인공지능 기본법)을 위한 현황 분석의 기초 자료로 활용 되었음 6. 기대효과 ㅇ 국내외 환경 변화에 대한 시의성 있는 정보 제공으로 정부 정책 대응력 제고 ㅇ 동태적 동향 분석 체계 구축을 통해 일관적이고 지속적인 정책 고도화 기반 마련 ㅇ 업계, 연구자 및 이용자 등 다양한 이해관계자에게 인공지능 관련 정책, 시장, 기업 전략, 표준, 인력, 연구 개발 동향 등 다양한 AI 현황 자료 제공함으로써 민간의 AI 산업 이해도 및 전략 대응력 향상에 기여

  • 요약문 1. 제 목 : 글로벌 AI 신뢰성 동향 분석 2. 연구 목적 및 필요성 본 연구의 목적은 국내외의 AI 신뢰성 관련 동향 조사를 통해 최신 이슈를 파악 및 분석하여 정책적 시사점을 도출하고, 국내 정책 수립을 위한 기초 자료를 제공하는 데 있다. 인공지능 기술의 급격한 발전으로 국가사회 전반의 변화가 빠르게 이루어지면서, 현재 많은 산업 분야에서 AI 기술이 도입되고 일상 활용이 확산되고 있다. 하지만, AI 높은 효용성과는 반대로, 기술적 한계와 오남용 등으로 인해 환각, 편견과 차별을 야기하는 불공정, 개인정보 유출과 같은 문제가 대두되고 있다. AI 기술로 인한 위협으로부터 안전한 활용을 가능케하기 위해 AI 신뢰성을 확보하기 위한 노력들이 확산되고 있다. 세계 각국은 인공지능의 효용은 극대화하고 역기능 등은 최소화하기 위해 법제도적 기반과 통제방안 등을 마련하고 있고, 국제기관에서는 정책 보고서 및 신뢰할 수 있는 AI를 위한 지침들을 발표하고 있다. 기업들은 AI 시스템 개발에 있어 자체적인 원칙을 마련하거나 검증을 위한 방안을 수립하는 등 신뢰성을 고려한 전략을 추진하고 있다. 우리나라 또한 AI 국가 전략을 기반으로 다수의 전략과 실행 계획들을 발표하며 다양한 정책을 추진 중에 있는 만큼, 세계 주요국의 시의성 있는 동향을 파악하고 대응 할 필요가 있다. 3. 연구의 구성 및 범위 본 연구는 총 7개의 장으로 서론(1장)을 시작으로 주요국 AI 신뢰성 동향(2장), 국제기구(3장) 및 주요 기업동향(4장), 연구 및 표준 동향(5장)을 비롯하여 주요 AI 활용 산업별 동향(6장)과 시사점 및 결론(7장)으로 구성되어있다. 국내외 정부 및 국제기관 등의 언론, 공식 보도, 정책보고서와 같이 다양한 정보소스를 바탕으로 동향을 조사하여, △법제도 △기업/산업 △기술/연구 △인력/교육으로 이를 분류하였다. 본 연구에서는 한국을 포함하여 총 14개의 주요국을 다루고 있다. AI 관련 활동이 활발한 미국, EU, 영국, 중국, 일본, 캐나다를 포함하여 기타 주요국(독일, 프랑스, 호주, 스페인, 네덜란드, 싱가포르, 이스라엘)에 대한 동향을 바탕으로 국가별 AI 신뢰성 정책 동향을 기술한다. 산업별 AI 신뢰성 동향에서 고려하고 있는 산업은 크게 5가지로, AI의 도입이 활발한 △ICT △교육 △의료 △금융 △보안 산업에 해당한다. 기본적으로 2023년 이전의 정책적 흐름을 간략하게 다루고 있고, 주 조사 내용은 2023년 자료에 해당한다. 4. 연구 내용 및 결과 2017년부터 현재까지 50개국 이상에서 신뢰할 수 있는 AI를 위한 국가 전략 또는 정부 차원의 이니셔티브를 채택하였다. 이에 따라 국가 AI 정책 관리를 위해, 각 국 정부는 정부 조정기관, 위원회 설립 등을 통해 다양한 거버넌스 모델을 사용하고 있다. 현재 시의성 있는 동향 중 하나는 규제 정책이며, OECD AI 원칙과 국가 AI 전략 등을 바탕으로 규제 프레임워크를 만들고 있다. EU의 규제법안인 AI act는 2023년 말 합의가 된 만큼 추후 시행까지 동향을 추가적으로 파악할 필요가 있다. 대부분의 국가는 위험 기반의 규제 방식을 채택하고 있고, 고위험 AI에 대한 관리와 통제조치들을 집중적으로 다루고 있다. 우리나라의 AI 관련 입법안들은 AI 산업 발전을 위한 기반 마련에 초점을 맞추고 있고, 최근 들어 입법안에서 규제적 조치를 담고 있으나 아직 추가적인 논의가 필요한 상황이다. 세계적으로 AI의 신뢰성 확보가 더욱 중요해지고 있는 만큼, 주요국들은 적극적인 국가간 협력 체계를 구축하면서 다양한 논의를 진행하고 있다 OECD, UN, 유네스코 등은 꾸준히 인간 중심 접근방식에 중점을 두고 다양한 활동을 하고 있는데, OECD는 GPAI(Global Partnership on Artificial Intelligence), AI 거버넌스 작업반(AIGO) 등을 통한 국제 협력을 주도하고 있다. 이외에도 AI 책임성 향상에 관한 정책보고서, AI 규제 샌드박스 보고서 등 여러 정책 보고서 또한 발간하고 있다. G7 7개국은 히로시마 정상회담에서 히로시마 AI 프로세스를 출범하며 AI 국제 행동강령을 마련하였다. 이외에도 AI 안전 정상회의에서의 블레츨리 선언 등 대부분 생성 AI 기술 확산에 따른 위험성 증가에 대응하기 위한 움직임이 다수 존재하였으며, 국제 협력 규모가 더욱 확대되고 AI 거버넌스 등이 생기고 있는 추세다. 각 국 정부의 규제 움직임에 대해 기업 및 산업 부문에서는 과도한 규제에 우려하는 추세로, 기술 발전과 신뢰성 확보 측면에서 입장차가 존재한다. 명확한 규제가 존재하지 않는 현재, 기업들은 자율 규제 방식을 채택하고 최소한의 신뢰성 확보를 위해 개발 가이드라인이나 윤리 원칙 등을 수립하여 대응하고 있다. 향후 AI 서비스 및 SW 등에 인·검증이 본격적으로 전개될 것으로 예상되는데, 이와 관련한 국제 표준 선도에 대한 전략적 대응이 필요한 상황이며, 선제적 대응을 통해 이를 주도함으로써 선도적 입지 확보를 위한 투자가 필요할 것으로 보인다. 마지막으로 생성 AI 기술이 산업의 각 영역에 적용되고 혁신 도구로서의 가능성을 보여주고 있다. 특히 의료, 금융, 보안, 교육 등 분야에서 AI가 많이 활용되고는 있으나, 개인 및 사회에 영향력이 높은 만큼 엄격한 검증이 필요하다. 이에 도메인의 정제된 데이터를 이용해 생성 AI 기술의 신뢰성을 높이는 연구들이 진행되고 있음을 확인할 수 있었으며, 생성 AI의 잠재적 보안 취약성과 오남용으로 인한 피해에 대한 산업계의 면밀한 검토가 진행되고 있음을 파악하였다. 향후 다양한 산업 도메인과 영역에서 생성 AI 기술이 적용되기 위해서는 산업 특화된 데이터를 기반으로 생성 결과물의 신뢰성을 높이는 작업과 함께, 올바른 활용을 위한 지침과 규정이 보다 구체화될 것으로 예상된다. 5. 정책적 활용 내용 주요국의 AI 규제 입법안에서 위험을 통제하는 수단들은 데이터 관리, 위험 및 품질관리, 보안강화, 인간에 의한 통제조치, 투명성 확보와 이용자에 대한 정보제공 등으로 정리할 수 있다. 국가 및 기업들은 AI가 다루는 데이터의 방대함과 민감한 데이터의 사용 등에 따라 정보보안에 대한 요구사항이 많다. 시스템의 안정적 운영이나 오류를 방지하기 위해서도 정보보안이 강화되어야 하는데, 대부분의 법률안들은 사이버보안에 대해 특히 강조하고 있다. AI 시스템이 의도된 목적에 따라 적절한 수준의 정확성과 견고성, 사이버보안을 달성하고 수명주기 동안 일관되게 수행할 수 있도록 설계·개발될 것을 요구한다. 최근에는 AI 기술의 안전성에 초점을 맞춘 ‘AI 안전’이 더욱 중요해지고 있으며 다양한 가이드라인이 제안되고 있는 추세이다. 이외에도 EU 및 미국 등은 AI 시스템이 사용되는 동안 인간이 효과적으로 감독할 수 있도록 설계·개발되어야 하고, 시스템을 안전한 상태로 정지시킬 수 있도록 통제를 강조하고 있으며, 투명성을 확보할 것을 규정한다. 이를 위해 미국, 영국을 중심으로 AI안전, 신뢰를 확보하기 위한 거버넌스 체계도 정비되고 있다. 국가 최고지도자를 중심으로 인공지능 국가 전략을 수립 추진하고 있으며 관련해 AI안전연구소와 같은 전담연구조직을 설치해 기술 및 제도 기반 수립을 위한 연구에 힘을 싣고 있는 상황을 주시할 필요가 있다. 생성 AI의 기반이 되는 파운데이션 모델(foundation model)의 중요성이 커지는 만큼 이와 관련된 지침들이 추가적으로 정의되고 있다. 향후 생성 AI는 텍스트를 넘어, 다양한 이미지, 영상, 텍스트 정보들을 학습에 활용하고 다양한 형태의 결과물로 출력하는 이른 바 ‘네이티브 멀티모달’ 기술로 전개될 것으로 예상된다. 따라서 데이터, 콘텐츠 산업 전반에 있어 영향이 커질 것으로 예상되는 가운데 관련 지적재산권, 오남용으로 인한 사회적 피해와 혼란에 대한 선제적 대응이 필요하다. 일례로, 딥페이크와 같은 기술은 배포, 게시 금지와 같은 규제와 처벌 규정들이 도입되고 있다. 이처럼 앞으로의 AI 신뢰성 정책을 수립함에 있어, 생성 AI를 비롯하여 급격히 발전하고 있는 AI 기술을 포괄적으로 수용할 수 있는 기반을 마련해 둘 필요가 있다. 기술과 서비스 변화에 따라 AI 산업 전반에 관여하는 구성원 또는 참여자가 달라지는 환경을 고려하여 구성원 간 관계, 개별 구성원이 준수해야 하는 의무들에 대한 지속적 논의가 필요하다. 또한 주요국들은 빠르게 인공지능의 위험성을 통제하는 수단들을 고민하고 적극적으로 입법화를 시도하는 만큼, 우리나라도 신업 진흥 및 기술 발전 이외에도 국내 규제 법안 마련에도 집중할 필요가 있다. 산업 및 시장 구조와 환경 변화에 대응하는 규제조치를 포함하여 데이터 관리와 차별 방지 의무화, 품질관리와 위험관리, 사이버보안과 회복력 확보, 인간에 의한 통제가능성 확보, 기술문서 작성과 기록관리 의무, 사용자 권리 보장과 국가의 감독기능 강화 등 다양한 규제수단들이 매우 구체적으로 제시되고 있는 만큼 적극적으로 이러한 조치들을 참조할 수 있을 것으로 판단된다. 6. 기대효과 본 연구에서는 국내외의 주요 AI 신뢰성 정책 사례를 조사하고 다양한 관점에서 이를 분석하였다. 법제도, 기업 및 산업, 기술 및 연구, 인력 및 교육 분야로 구분하여 넓은 범위에서 시의성 있는 사례들을 포함하여 의미 있는 움직임들을 파악할 수 있다. 또한 분석을 통해 현재 주요국의 규제에 대한 움직임, 기업들의 대응 방법, 주요 AI 활용 산업 분야에서의 신뢰성 이슈 등에서 시사점을 도출하여 방향성을 제시하고 있다. 이러한 국가별, 산업별 정책 현황 자료 및 분석 결과는 앞으로의 새로운 국내 AI 신뢰성 정책 수립에 있어 참고 자료로서 활용 될 수 있을 것으로 기대된다.

  • 요약문 1. 제 목 : 국내 AI 창업기업 비즈니스 현황 분석 2. 연구 목적 및 필요성 우리나라는 AI 산업 육성을 위한 국가 전략과 입법을 꾸준히 추진해왔다. 예를 들어, 2023년 1월 발표된 「인공지능 일상화 및 산업 고도화 계획」(관계부처 합동)은 AI 소프트웨어와 하드웨어의 초격차 실현을 위한 기술 연구개발, 법 제도 및 규제 정비를 비롯해, AI 기업 성장을 위한 데이터 및 해외 진출 등의 내용을 담고 있다. 이를 통해, 2027년 3대 AI 기술 강국 도약, AI 전문기업 1천 개 육성 등의 정량적인 목표도 제시하였다. 이러한 국가정책을 바탕으로 지금, 이 순간에도 국내 다수의 창업기업이 AI 기술을 활용하여 새로운 비즈니스를 창출하고 있으나, 세계적인 경기 침체를 비롯한 여러 가지 애로사항으로 인해 사업을 영위하기에 어려운 상황에 직면해 있다. 예를 들어, 학습용 데이터나 AI 반도체 등 AI 인프라 구축의 어려움, AI 인재 확보의 한계, 해외 언어 및 이종 문화 문제를 비롯한 판로 개척의 난항으로 인한 글로벌화의 한계 등으로 인해 AI 창업 투자 생태계 강화를 위해서는 국내 창업·투자 생태계 연구가 중요한 상황으로 꼽히고 있다. 이에, 본 연구에서는 국내외 선행연구를 통해 AI 창업기업을 정의하고, AI 창업기업의 비즈니스 현황을 분석하고, 주요 우수사례를 발굴하고, 주요 창업기업을 대상으로 심층 인터뷰하여 기업이 직면한 현황, 제품 및 서비스 개발 현황을 파악하고, 정부의 정책 지원이 필요한 분야 등 AI 산업 생태계를 육성하고, AI 창업지원을 위한 정책 기초자료를 파악하고자 한다. 이를 통해, 국내 AI 창업·투자 생태계를 파악하면서 해외 주요국과 비교할 수 있는 시장현황 통계를 생산함으로써, 세계적 수준의 AI 창업기업 육성을 위한 정책의 기초자료 마련을 목표로 한다. 빠르게 변화하는 AI 시장과 창업·투자 생태계 특성상 조사 시간이 많이 요구되는 실태조사 대비, 유관 DB를 기반으로 신속하게 현황을 파악하고 국내·외 현황 비교를 위한 대안적 조사 연구로써 데이터 기반의 분석을 수행하였다. 3. 연구의 구성 및 범위 본 연구는 크게 세 가지 세부 과업으로 구성되어 있다. 첫 번째는 AI 창업기업 정의, 조사 및 분석이며, 두 번째는 AI 창업기업 비즈니스 현황 조사이고, 셋째는 AI 기업 사례 및 기업·기관 심층 조사에 관한 내용이다. 먼저 AI 창업기업 정의, 조사 및 분석에서는 AI 창업기업 정의에 대한 선행 조사를 기반으로 하여 창업기업을 정의하고, AI 창업기업 기준을 설정하였다. 이어, 정의된 AI 창업기업 기준에 맞게 창업기업 명부를 정리하고, 조사항목을 도출하여 VC 투자 정보 데이터베이스 및 웹 자료로부터 AI 창업기업 전반에 대한 투자 및 매출 현황, 정부 지원사업 추진 현황, 해외 진출 현황, 특허 등 지식재산권 보유현황 등을 조사하고, 이러한 요인들과 기업의 투자 및 매출과의 상관관계 분석을 위한 통계 분석 등을 수행하였다. 마지막으로, AI 창업기업에서 주요한 모범사례들이나 특징적인 기업을 선정하여 심층적으로 사례분석을 수행함과 동시에 AI 기업과 기관 심층 조사에서는 창업기업 투자나 정책지원기관, AI 창업기업을 대상에 대해 인터뷰하였다. 4. 연구 내용 및 결과 선행 문헌과 선행 연구에 기반하여, AI 분야 창업기업의 정의와 분류 기준을 마련하였다. 즉, 업력 7년 이내 기업으로, AI 기술을 통해 제품, 서비스, 플랫폼의 생산, 유통, 활용, 부가서비스, 조사, 분석, 컨설팅, 중개 등의 과정을 통해 가치를 창출하는 기업으로 정의하여 이 기준에 맞게 국내 VC 투자 데이터베이스인 더브이씨 DB에서 377개의 AI 창업기업을 포함, 총 513개 기업을 대상으로 투자, 수상 이력, 해외 진출, 제품 서비스, 지식재산권 확보 현황 등을 도출하였다. 주요 분석 결과는 다음과 같다. [국내 AI 분야 VC 투자 주요 결과] [국내 생성형 AI 분야 VC 투자 주요 결과] AI 창업기업을 대상으로 한 사례분석을 수행한 결과, 일부 AI 창업기업의 경쟁 우위와 이익창출력 측면의 취약성에 의해 지속성장의 어려움이 예측되었다. 이를 위해서는 기술과 서비스 개발을 위한 R&D 지원, 학습데이터 및 인프라 구축, 전문인력 지원의 필요성이 있었다. 기업과 기관 심층 인터뷰 결과, 최근 AI 스타트업의 대표적인 어려움으로는 높은 AI 모델의 개발 비용과 개발 데이터 확보의 어려움 및 AI 효과에 대한 투자자의 의문 등으로 초기 투자의 기피 요인이 발생하고 있다. 또한, 스타트업은 해외 시장 진출 경험 부족에 따른 Global standard 부재와 언어, 지역, 문화, 비용 등에 대한 정보 부족의 어려움을 호소하고 있다. 이에, 대기업의 자본과 창업기업의 능동적인 구조를 활용한 협업 체계를 마련하고, 대기업 벤처캐피탈 설립을 통한 오픈이노베이션 프로그램 활용이 적극적으로 필요하다고 할 수 있다. 초격차 기술을 가진 기업을 대상으로 빠른 상장을 지원하기 위해 과기정통부에서 추진하는 초격차 기술특례 상장 제도의 빠른 정착과 함께, AI 초격차 기술을 가진 기업에 경제적 지원을 할 AI 전용 펀드 결성을 통해 AI 산업 생태계 마련 및 지속성을 유지하면서도 장기적 관점에서 AI 전문인력 양성 방안 모색이 필요하다. 또한, 선제적 차원의 정부 공공 데이터를 기반으로 한 AI 기술 도입이 필요한 상황이다. 5. 정책적 활용 내용 본 연구과제의 주요 정책적 시사점은 다음과 같다. 스타트업 대상의 투자를 촉진하기 위해서는 높은 투자금을 받는 우수 스타트업을 육성하고, 대기업과의 투자 및 연구협력을 통해 기업의 내실을 키우도록 지원하는 것이 중요 정부 중심의 투자 시 좀비 스타트업을 양성하지 않도록 스타트업의 좋은 제품을 선별하여 정부가 구매하고 인증을 하는 방법이나, 공공 데이터 개방을 촉진하는 등 다른 방법의 정부 투자가 필요 해외 진출 기업과 투자자 간의 지속적인 네트워킹과 경험 교환의 장 마련 글로벌 협력을 위해 아프리카나 동남아시아 등 신흥국 ODA 사업과 연계한 글로벌 AI 활용 촉진, 국내 AI 기업 해외 영업 레퍼런스 확보 가능성 검증 기업가 정신의 함양: 교육과정으로서의 기업가 정신이 아닌, 타트업 CEO의 성공과 실패 경험을 공유하고 사업계획서를 작성하는 방법, 인큐베이터와 투자유치, 인력 확보 방안 등 실무적인 경험을 키우고 전문성을 강화 스타트업의 출구전략에 대한 정책 필요 (M&A와 기업공개를 활성화) 글로벌 AI 기업에게 필수적 사례가 된 안전하고 신뢰할 수 있는 AI 기술의 개발 오픈소스 AI 활용을 독려할 수 있도록 오픈소스 전문가 인력 채용을 활성화하고 오픈소스 기반 산업 응용 소프트웨어 개발을 위한 연구개발 지원 지역, 언어의 한계 극복을 위한 멀티모달 생성형 AI 기술에 주목 전문 인력 양성 및 국내 기업의 글로벌 AI 인재 유치 지원 등의 필요성 본 과제에서 제시하는 빠르게 생성 및 진화하는 국내 AI 창업기업 현황 분석 방법론을 통해, 향후 AI 기업 모집단 구축에 이바지할 수 있다. 이를 통해, 시의성 높은 산업·지역별 AI 제품 및 서비스 현황 분석으로 AI 산업 진흥을 위한 정책 자료로 제공할 수 있다. 6. 기대효과 본 연구를 통해 국내 AI 창업기업에 대한 최신 VC 투자 현황과 비즈니스 분석을 통해 국내 AI 기업을 육성하기 위한 정책 수립에 필요한 기초자료로 활용될 수 있다. 향후 혁신적인 인공지능 제품/서비스 활용 확대를 위한 미래 연구에도 활용될 수 있을 것으로 기대된다.

  • 요약문 1. 제 목 : 국외 AI 시장 및 창업지원 정책 동향 조사 2. 연구 목적 및 필요성 2022년 ChatGPT의 출시와 더불어, 최근 초거대 AI 애플리케이션의 확산과 함께 전 산업의 AI 활용 확대 등 AI는 글로벌 시장에서 빠르게 확산하고 있다. 기존 산업에서는 AI를 도입하여 생산성 향상과 신규 시장 창출 등 부가가치를 발생하고 있으며, 신규 스타트업이 지속적으로 등장하여 VC와 정부로부터 대규모의 투자를 받아 성장하고 있다. 이에, 글로벌 AI 시장 및 창업 투자 동향을 파악하여 국내 AI 산업과 비교, 분석하는 연구를 통해 국내 AI 산업의 육성을 위한 정책 방향 수립의 기초자료 생성이 필요한 상황이다. 즉, 하루가 다르게 신규 기업 및 서비스가 출현하고 있는 급변하는 AI 시장의 특성을 고려할 때 글로벌 시장 조사와 환경분석은 시장의 흐름을 인지하고 기회를 포착하여 정책수립의 방향 설정을 하는 데에 중요한 역할을 할 것이다. 본 연구는 글로벌 인공지능 시장 및 투자 규모를 추정·전망하는 정량 자료를 수집‧ 분석하여, 주요국과 국내시장을 비교 분석하여 국산 AI 경쟁력 강화 및 해외진출 정책 발굴에 필요한 기초자료를 생성하는 데에 목적을 둔다. 또한, 국내와 해외의 AI분야 창업을 지원하는 정책의 비교 분석을 통해, 정책의 현황을 도출하고 비교함으로써 국내 AI 창업 및 투자 관점에서의 향후 가능성에 대해 분석하는 것을 목표로 한다. 3. 연구의 구성 및 범위 먼저, 본 과제에서 아우르는 ‘생태계’에 대한 용어를 명확히 정의하기 위해 기존 선행연구 문헌을 검토하였다. 이후, 글로벌 및 국내 AI 시장 규모 조사를 위해 글로벌 시장 조사 기관인 IDC와 Gartner로부터 세계, 국내 AI 및 생성형 AI 시장 규모 전망 보고서를 수집하여 조사 및 시사점을 도출하였다. 또한, 주요 국가별 AI 공급을 주도하는 주요기업의 시장 동향을 수집, 정리하였다. 시장 조사 기관의 보고서는 객관적인 수치를 도출하여 연도 및 국가 간 비교 분석을 하기에는 용이하나, 세부적인 기업의 현황과 통계 분석을 진행하기에는 원본 데이터 확보의 어려움, 기관의 수치 보정 및 계산 등의 사유로 어려움이 있다. 이에, 국가 간 비교가 가능한 스타트업 지표인 VC 투자 현황 데이터베이스인 Crunchbase 및 Dealroom.co 등을 분석하여 연도별, 국가별 AI분야 투자 및 창업기업 현황을 분석하였다. 마지막으로, 주요국의 AI 창업분야 정책 현황을 분석하고, 최근 우리나라의 각 유관 부처가 발표하는 AI 창업 정책을 통해 우리나라의 정책적 창업 환경의 강·약점을 도출하였다. 이를 통해, 전문가 자문 의견을 참고하여 최종 시사점을 도출하였다. 4. 연구 내용 및 결과 AI 생태계 관점에서는 AI의 공급과 수요, 활용 관점에서 주체들이 상호 상생하고 협력하는 구조를 형성하고 있다. 최근 글로벌 AI 생태계의 확장과 생성형 AI의 주목에 따라, 산업과 기업을 혁신함으로써 생태계는 능동적으로 확장되고 있다. 창업 및 투자 생태계 관점으로는 정책, 시장, 금융, 인적 자원, 지원, 문화 등 6가지 영역의 창업 생태계 모델을 바탕으로, 기업가정신에 기반하여 혁신적인 스타트업의 발전과 성장을 지원하고, 자금조달과 성장, 회수 등 창업 전반의 프로세스를 진행하는 제도와 자원의 기반을 의미하는 것으로 정의하였다. 글로벌 AI 시장 규모 및 투자 현황을 분석한 결과는 다음과 같다. [세계 AI 시장 규모] [해외 AI분야 VC투자 주요 결과] 글로벌 AI 시장 현황 분석 결과와 유사하게 VC 투자 부문 역시 미국이 전세계의 AI 시장을 주도하고 있으며, 특히 구글이나 MS 등 빅테크 기업이 시장 점유율은 물론 생성형 AI 스타트업 투자에서도 상위 투자액을 기록함으로써 플랫폼과 스타트업 생태계를 구성하고 있는 형태를 볼 수 있었다. 우리나라는 2022년 투자액 기준 세계 10위로, 스탠퍼드 AI Index의 결과와 유사한 수준으로 나타났다. 5. 정책적 활용 내용 본 연구의 주요 정책적 시사점은 다음과 같다. 정부의 적극적인 창업 정책과 AI 전략에 기반한 AI 창업기업 지원 정책 강화 AI 창업기업에 대한 정보 제공 및 자문 지원 글로벌 시장 진출 및 브랜드 위상 강화, 국제협력 및 파트너쉽 강화 개방형 AI 창업 연구 체계 구축 국내 인력의 해외 인력 유출 방지, 우수한 AI 인재 양성 및 유치 산업 생태계에서 협력체계 및 다양성 강화 창업기업들의 자금조달력 강화 지원 AI 창업 활성화를 위한 현행 법규에서 부담과 장애로 작용하는 규제를 완화하는 정책 마련 국내 AI 창업기업의 자금조달 및 투자 환경 개선 국내 대기업으로부터의 벤처투자 및 기업벤처캐피털(CVC) 활성화 GPT스토어 등 빅테크 생태계의 독점에 대한 우려 해소 필요 AI 원천기술(Foundation Model 등) 확보에 주력 현재, 국가별 AI 지수는 미국 스탠포드 대학을 비롯, 영국 토터스인텔리전스 등에서 매년 발표함으로써 세계적인 공신력을 인정받고 있다. 본 연구의 결과는 세계적인 AI 지수 발표 내용을 분석, 설명하는 보조 자료로써 활용될 수 있다. 대다수의 AI 지수는 순위와 점수 위주로 발표되며, 구체적인 스타트업의 수나 국가별 상위 투자 기업 등 계산 방식은 비공개로 처리되어 상세한 분석이 어려운 단점이 있으나, 본 연구와 같은 데이터베이스 원자료에 기반한 구체적인 데이터 분석 연구는 정량적인 결과 외에 추론과 국가별/기업별/기간별 세부 분석이 가능한 장점이 있다. 또한, 최근 AI 분야는 국가별 치열한 경쟁으로, 특히 선두국인 미국과 중국의 첨단기술 무역 경쟁으로 치닫고 있다. 아직까지는 미국과 중국 양국 간 경계를 넘나드는 투자나, 중국으로부터 투자받은 국내 기업이 문제가 되지는 않고 있지만, 본 과제에서 확보한 원자료를 통해 국가 간 투자 현황에 대한 모니터링이 가능하다. 6. 기대효과 세계 AI 시장 및 투자 규모 대비 국내 규모와 성장성을 파악하기 위해 수행한 본 연구과제는 세계 시장 대비 국내 인공지능 창업·투자 시장의 현주소를 점검하고 앞으로 AI 산업 생태계 활성화를 위한 정책 개발에 도움이 될 것으로 기대한다. 본 연구를 통해 국내 인공지능 시장 활성화 및 국내 기업 역량 강화 목적의 다양한 정책을 마련함으로써, AI 기술과 유관 산업이 중심이 된 국가경제 활성화와 AI 기업의 경쟁력 제고 등에 이바지할 것이다.

  • 요약문 1. 제 목 : 공공부문 AI 도입현황 연구 2. 연구 목적 및 내용 인공지능 기술의 발전에 따라 공공분야에서도 인공지능 도입 및 활용 범위의 확대가 업무 생산성 및 효율성 개선과 대민서비스 향상에 기여할 것으로 전망한다. 이러한 기대감 속에 현 정부는 다양한 인공지능 정책 추진을 통해 인공지능 도입과 활용에 대한 중요성을 강조하고 있으며, 향후 정책 개선 요인을 도출하는 차원에서 공공부문의 인공지능 도입현황에 대한 기초 자료를 마련하는 것은 필수적인 요소이다. 지난 10년간 조달청의 입찰정보와 계약정보를 활용하여 공공부문 인공지능 도입 현황을 보다 객관적이고 사업 단위까지 세밀하게 조사를 수행하고자 한다. 더불어 수집된 정보를 바탕으로 타 기관에 시사점을 제공할 수 있는 사례를 선별해 성공요인 등을 분석하여 공공부문의 AI 도입 및 활용 확대를 위한 정책적 시사점을 도출하는 것이 본 연구의 목적이다. 국내 공공부문의 AI 도입현황 조사 연구는 크게 2개 부문으로 나뉜다. 우선 도입현황 조사 부문은 지난 10년간 420개 공공기관의 ICT시스템 관련 용역계약 정보와 제안요청서, 과업지시서 등 첨부분서를 조달청의 조달정보개발포털을 통해 수집한다. 수집된 공공조달 데이터에서 AI 관련 사업은 텍스트 마이닝 기법을 사용하여 입찰 제안서(RFP) 세부 내용에 인공지능(AI) 관련 키워드가 포함되어 있는지 여부로 선별한다. 최종 선별된 인공지능 용역계약의 첨부문서를 분석해 추진단계, 활용 분야, 용도, 기술유형 등 부가 정보를 추가한 DB를 구축한다. 구축된 DB를 활용해 연도별 변화추이, 기관구분별 특성, 발주 및 낙찰 기관 등 다양한 관점에서 공공부문의 AI 도입 현황을 조사한다. 다음은 공공기관의 인공지능 도입 활성화 방안 도출을 위한 사례분석이다. 정보시스템 평가나 시스템 운영/관리 평가모델 등을 수집하여 평가요소를 확인하고, 공공기관과 인공지능의 성격에 적합한 내용을 필터링하여 평가방법을 개발한다. 조달공고 DB와 제안요청서(RFP) 등으로부터 시스템 관련 기초 정보를 수집하고, 시스템에 직접 접속/확인하거나, 기관의 홈페이지 혹은 홍보기사 등을 통해 추가적으로 수집한 정보로 벤치마킹 케이스를 선정한다. 선정된 벤치마킹 대상 사례분석을 통해 시사점을 도출한다. 4. 연구 결과 가. 도입현황 조사 과거 10년(2013∼2022년)간 공공부문 조달계약 중 인공지능(AI) 도입 계약 건수는 3,870건이다. 420개 공공기관의 56.7%인 238개 기관이 인공지능을 도입한 것으로 나타났다. 조사 대상 기관 중 자체적인 ICT 시스템을 보유하지 않은 소규모 기관이 다수 포함되어 있어 이들을 제외하면 공공기관의 실질 도입률은 크게 높아질 것이다. (연도별 추이) 공공기관의 인공지능 도입은 2016년 알파고 쇼크 이후 매년 빠르게 증가하였다. 인공지능 계약은 2015년 107건에서 2022년 922건으로 7배 가까이 증가했으며, 금액은 2016년 938억원에서 2022년 1조 831억원으로 10배 이상 늘어났다. 이에 따라 공공기관의 전체 ICT관련 용역 계약 중 인공지능이 차지하는 비중도 금액 기준으로 2016년 2.22%에 불과했으나 점진적으로 증가하여 2020년 이후 12% 수준으로 늘어났다. 용역 건당 금액은 2016년 7천만원 정도에서 2017년 이후 1억원 수준으로 증가했다. (추진단계) 2016년 딥러닝 등 새로운 인공지능 기술이 주목 받으면서 2017년부터 인공지능 도입을 위한 정보화계획의 수가 빠르게 늘어났다. 또한, 학습 위주의 고성능 인공지능 도입이 늘어나게 되면서 2020년부터 데이터셋 구축 및 단위 SW 개발을 위한 모델개발 단계가 크게 증가하였다. AI스피커 등의 서비스 기술 발전이 진행됨에 따라 2019년 이후 이들을 활용한 서비스임대 방식이 지자체를 중심으로 점차 확대되었다. (정책 분야) 전자정부, 민원 서비스 등에 관련된 시스템 수요가 많은 일반행정 분야가 지속적으로 전체의 20% 이상의 가장 높은 비중을 차지하고 있다. 다음으로 산업/고용(산업육성, 일자리매칭 등, 16.5%), 교통수송/건설(지능형 교통망 등, 11.6%), 기상/재난안전(기상 예측 등, 10.4%) 순으로 많이 도입되었다. (활용용도) 2016년 이전에는 對국민 공공서비스를 위한 인공지능 기술 도입 비중이 내부 역량강화 목적보다 높았으나, 이후 고유 업무의 효율화를 위한 도입이 늘어나면서 이전과 반대 상황이 되었다. 하지만 2020년 이후 챗봇, 자연어처리 등 민원 서비스를 위한 기술이 발전하면서 다시 공공서비스 도입 비중이 점차 높아지고 있다. (기술유형) 전체적으로 언어지능(37%), 전문가시스템(34.7%), 시각지능(19.6%) 순으로 과제가 많이 진행되었다. 언어지능의 경우 초반 규칙 기반의 TTS, STT 등의 과제가 많아 가장 높은 비중을 차지했으나 점차 축소되고 있다. 대신, 전문가시스템은 매년 큰 폭으로 증가하여 2022년 전체 용역 중 45%로 가장 높은 비중을 차지하고 있다. (적용기술) 과거 인공지능은 문서의 디지털화를 위한 OCR 기술과 장애인의 홈페이지 접근성 제고를 위한 TTS 기술에 주로 적용됐었으나 2016년 이후 다른 기술의 적용이 확대되면서 2개 기술의 비중은 빠르게 감소한다. 챗봇은 2016년 3건을 시작으로 2020년부터 급속히 확산되어 2022년 161건으로 급증하였다. 또한 음성인식과 비정형 데이터 처리 기술이 발전하면서 STT와 자연어처리 적용도 급속하게 확대되었다. (기관구분별) 계약 건수는 국가기관(36.8%), 지자체(23.5%), 준정부기관(19.4%), 기타공공기관(19.4%) 순으로 많고, 총 계약금액은 국가기관(56.2%), 준정부기관(27.4%), 지자체(11.7%), 기타공공기관(11%) 순으로 많다. 국가기관과 기타공공기관은 타 기관에 비해 모델개발 단계의 비중이 상대적으로 높은 반면 정보화계획과 모델개발을 건너뛰고 바로 정보시스템 구축에 들어간 사례가 많다. 국가기관은 일반행정 분야가 433건으로 가장 높은 비중을 차지하고 있으며, 그 외 기관별 고유 업무에 따라 다양한 분야에서 인공지능 기술이 도입되고 있는 것으로 나타났다. 지자체 역시 일반행정 분야가 가장 많으나 교통수송/건설이 그 다음으로 ITS 등 지역의 교통문제 해결을 위해 인공지능 기술을 많이 도입하고 있다. 그리고 기상/재난안전 분야도 지속적으로 활용이 증가하고 있는 것으로 나타났다. 지자체를 제외한 다른 공공기관은 공공서비스 보다 내부역량제고 목적으로 인공지능을 도입한 사례가 2배 정도 많다. 특히 기타공공기관과 공기업은 대국민 서비스가 적은 기관 특성에 때문에 타기관보다 내부역량제고 비중이 높다. 공공서비스의 세부 용도를 살펴보면, 준정부기관과 기타공공기관은 민원 서비스 비중이 안내 서비스보다 높다. 이것은 이들 기관이 콜센터 상담 업무를 챗봇 등을 사용하여 자동화한 결과이다. 반면 지자체는 민원 서류 발급은 행정망을 사용하고 대면 민원처리가 많아 안내 서비스의 비중이 다른 용도에 비해 절대적으로 높다. 내부역량제고는 전체적으로 비정형 데이터 비중이 높으며 기관 특성에 따른 세부 용도 비중의 차이는 크지 않다. 기술유형별 건수를 보면 전체적으로는 언어지능>전문가시스템>시각지능 순으로, 국가기관은 전문가시스템>언어지능>시각지능 순으로 도입하였다. 특히 전문가 시스템 유형의 분석 업무를 추진한 과제가 기타공공기관, 준정부기관에서 주로 추진되고 있으며, 민원/안내 목적의 언어지능 시스템은 지자체와 준정부기관에서 많이 추진된 것으로 나타났다. (발주기관) 국가기관에서는 행정안전부가 전자정부 시스템의 지능화를 적극 추진하면서 인공지능 도입 용역 건수 및 계약 금액에서 1위를 차지하고 있다. 대규모 시스템을 보유한 국세청, 과학기술정통부(우정사업본부), 보건복지부, 관세청, 법무부 등이 투자금액에서 상위 기관에 위치하였다. 광역자치단체에서는 경기도(229건), 서울특별시(115건), 경상남도(105건) 순으로 인공지능 도입에 적극적이었던 것으로 나타났다. 경기도는 많은 인구와 복잡한 교통의 지역 특성상 교통 관련 업무에 딥러닝과 TTS를 타 시도 대비 적극적으로 활용하였다. 다른 시도와 달리 서울시, 충청남도 등은 공공서비스 보다 내부역량제고 용도에 더 많은 프로젝트를 진행하였다. (낙찰기업) 공공부문 인공지능 도입 계약 3,870건의 낙찰기업은 총 1,348개이고 평균 계약금액은 11.9억원이다. 이를 조달정보개방포탈의 기업구분에 따라 나누어 살펴보면, 대기업(98억원), 중견기업(63억원), 중소기업(7.8억원), 비영리 중소기업(6.5억원), 비영리법인(1.8억원) 순이다. 전체 인공지능 건수 중에 중소기업이 56.3%의 계약을 낙찰받았고, 비영리 중소기업도 30.6%를 낙찰받아 합계 86.9%를 진행한 것으로 미루어 보았을 떄, 소규모의 인공지능 프로젝트도 활발히 진행되고 있음을 알 수 있다. 나. 사례분석 인공지능 도입 계약 3,870건 중‘AI 도입의 성숙도 모델’에서 3단계(구축) 이상에 속하는 계약 건(2,584건)을 대상으로‘AI 도입기관 사례평가 모델’을 활용하여 분석한 결과, 1차로 30개의 우수사례를 선별하였다. 1차에서 선별된 30개의 계약 건을 대상으로 RFP 확인, 정보검색 및 전문가 검토를 통해 최종적으로 4개의 사례(한국고용정보원, 대검찰청, 관세청, 서울시) 를 선정하여 상세분석을 진행했다. [AI 도입의 성숙도 모델 img] 선정된 4건의 사례 분석 대상은 공통적으로 초기 연구부터 정보화계획, 단계별 구축을 통해 점진적으로 발전하여 왔다. 이들 기관은 기술에 대한 이해도가 높고 도메인 지식이 있는 내부 전문가를 보유하고 있어 사업 진행에 주도적인 리더십을 발휘할 수 있었다. 이들은 도메인 지식의 공유와 명확한 요구사항, 대안이 있는 피드백 등을 통해 새로운 기술 도입을 위한 끊임없는 개선 및 고도화를 추진하였다. 또한 인공지능 기술 도입의 필요성에 대한 기관 차원의 요구가 강하여 사업 진행에 있어 내부 구성원의 이해와 협조가 원활하게 이루어졌다. 한편, 분석대상 기관의 시스템을 구축했던 개발자들과 심층 인터뷰를 한 결과, 도입 기관의 리더십 강화를 위해서는 내부 기술 전문인력 확보도 중요하지만, 시스템 구축시 개발자들과의 원활한 소통을 위해 AI 도입을 위한 ISMP 같은 프로토콜이 필요한 것으로 나타났다. 또한 요구되는 정확한 시스템 또는 기능 도입을 위해서는 데이터 품질확보가 가장 중요하므로 모델 개발이나 시스템/서비스 구축 시 데이터 클린징에 대한 비용과 시간을 충분히 제공하는 것이 중요하다는 의견이 많았다. 5. 결론 조달 정보를 사용한 현황조사와 사례분석을 종합하여 도출한 국내 공공부문 인공지능 활용을 촉진하기 위한 정책적 제언은 다음과 같다. 첫째, 많은 광역 및 기초 지자체가 적은 예산으로 체계적인 계획 없이 산발적으로 인공지능 시스템을 도입하고 있는 상황으로 지방자치단체에 대한 지원을 강화해야 한다. 현재 정부에서 추진 중인 차세대 지방행정공통시스템 구축 사업에 인공지능 기술을 최대한 많이 적용해 인공지능 활용을 확대해야 한다. 또한 상위 기관이 주도적으로 지역 공통의 문제를 발굴해 인공지능으로 해결한 후 하위 기관에 체계적으로 확산·보급하는 전략이 필요하다. 둘째, 최신 인공지능 기술 도입을 위한 민관협력 선순환 구조 창출이 필요하다. 공공기관에서 최신 인공지능 기술을 활용하기 위해서는 ‘대학, 연구소 등과 공동연구 → 실증 보급 → 테스트용 데이터셋 공개 → 민간 기업 제품 개발 → SaaS 방식의 최신 인공지능 서비스 사용’의 선순환 구조를 지속적으로 창출해야 한다. 선순환 구조 창출 성공의 핵심 포인트는 테스트용 데이터셋 공개이다. 공동연구 과정에서 확보한 정제된 데이터로 테스트용 데이터셋을 벤치마크 수치와 함께 일반에 공개해 관심 있는 AI기업과 연구자의 자발적인 참여를 이끌어 내야 한다. 현재 시스템보다 우수한 벤치마크 결과를 제시한 기업 제품으로 업그레이드 한다면 사업 성공의 위험 부담을 경감하면서 최신 기술을 적용할 수 있을 것이다. 더 나아가 자체 시스템 구축이 아닌 SaaS 형태로 도입 방식을 바꾸면 최신 기술 적용의 부담을 경감하고 보다 쉽게 확산시킬 수 있다. 셋째, 체계적이고 단계적인 도입 전략이 필요하다. 최근 각광받고 있는 딥러닝 등 인공지능 최신 기술은 아직 정립된 방법론이 없고 IT서비스 기업의 경험도 상대적으로 많지 않아, 인공지능 도입 사업의 리스크가 기존 시스템 보다 큰 상황이다. 기관 업무를 세부적으로 나누고 일부 사업을 시범적으로 추진해 구축 경험과 성과를 축적한다. 이를 활용해 다른 영역으로 사업을 확대하고, 최종적으로 각 부분을 통합해 하나의 시스템으로 완성하는 도입 전략이 성공 가능성을 높일 것이다. 넷째, 기관 내부에 AI 전문가 육성이 필요하다. 사례조사를 위한 심층 인터뷰 과정에서 공통적으로 지적하는 가장 큰 애로사항은 인공지능 지식이 부족한 내부 실무자는 인공지능에 대한 환상을 갖고 있고, 개발자는 도메인 지식이 부족하다는 점이다. 기관 내부에 인공지능 교육을 강화하고 초기 단계부터 두 가지 입장을 조율하고 올바른 의사결정을 할 수 있는 사내 전문가를 양성해야 한다. 다섯째, 데이터 cleaning을 위한 시간과 예산 지원을 강화해야 한다. 인공지능은 기존 시스템과 달리 얼마나 정제된 데이터로 학습하는가가 중요하다. 많은 공공사업이 인공지능 특성에 대한 고려 없이 기존 관행대로 개발 일정과 비용을 책정해 데이터 cleaning에서 많은 문제와 애로사항이 발생한다고 지적한다. 구축 계획시 데이터에 대한 충분한 고려가 있어야 하고 주기적인 재학습이 필요하기 때문에 체계적인 데이터 관리가 필요하다.

  • 요약문 1. 제 목 : 산업 수요 중심의 국가 AI R&D 전략성 강화를 통한 AI 확산 방안 연구 2. 연구 목적 및 필요성 최근 인공지능(AI) 경쟁력이 국가 경제와 직결될 만큼 절대적 영향력을 가지게 되면서, 미국과 중국을 중심으로 한 글로벌 AI 기술패권 경쟁이 더욱 치열하게 전개되고 있다. 미국의 동맹국과의 연대를 통한 對중국 기술제재와 중국의 자체 AI 기술생태계 구축 노력이 동시에 전개되면서 양국 간 일대일 구도의 경쟁이 아닌 AI 기술 블록화와 맞물리는 진영 대결로 심화되고 있어, 기술적 자주성과 글로벌 리더십 확보를 도모하기 위해 국가 차원의 전략적 선택과 범국가적 역량의 집중이 요구되고 있다. 우리나라는 AI 기술수준 측면에서 중국에 이어 두 번째로 빠른 속도로 성장하여 현재 선진국들에 근접한 수준에 이르렀다. 그러나 생태계 측면에서는 AI 기술의 개발 및 공급이 크게 확대되고 있는 추세에도 불구하고, 시장(수요)에 해당하는 AI 응용·활용 수준이 다소 미흡한 상황이다. 여러 실태조사에서 기업들이 AI 도입의 가장 큰 걸림돌로 ‘기업 수요에 맞는 AI 기술 및 솔루션 부족’과 ‘맞춤식 AI 적용의 어려움’을 응답한 것으로 볼 때, 이러한 상황의 주요한 원인 중 하나가 바로 AI 기술 수요와 공급의 미스매치라고 판단된다. 즉, 우리나라 AI 기술생태계 자립성 확보의 선결조건인 AI 확산을 위해서는 산업에서의 활용도 있는 기술개발을 위한 정책적 노력이 필요함을 시사한다고 볼 수 있다. 한편, 글로벌 경기둔화와 고금리 기조 등의 영향으로 경제 불확실성이 증대됨에 따라, 우리나라 정부는 최근 이러한 경제위기 돌파와 더불어 그동안 끊임없이 지적되어왔던 국가 R&D 성과의 질적수준 정체 문제 해결이라는 시대적 요구에 부응하여 ‘R&D 혁신’을 추진하고 있다. 즉, 글로벌 AI 기술패권 경쟁에 능동적으로 대응하기 위하여 AI 기술경쟁력 강화와 산업 활용도 높은 기술개발을 통한 AI 확산을 도모해나가야 하는 동시에, 이를 ‘R&D 혁신’이라는 국가 전략에 부합하는 방향으로 추진해나가야 하는 상황이라는 것이다. 종합하면, AI 기술에 대한 국내 기업들의 인식·수요 현황을 객관적으로 확인하고, 산업 수요를 고려하여 국가 AI R&D 추진 방향을 전략적으로 수립·조정할 필요가 있다고 사료된다. 본 연구에서는 산업 활용도·수용성 중심의 국가 AI R&D 전략성 강화를 통한 AI 확산을 도모하는 정책 방안 및 제언을 제시한다. 본 연구를 통해 산업 수요에 부합하는 기술의 개발 및 공급을 통한 全 산업의 AI 융합·활용을 가속화하는 한편, R&D 성과 확산을 통한 국가 AI R&D 투자 및 정책의 효율성·효과성 제고를 도모하는 데 도움이 될 수 있는 기초자료를 마련하고자 하였다. 3. 연구의 구성 및 범위 본 연구에서는 먼저 AI 기술개발에 대한 정부의 투자 측면인 국가 R&D 현황을 분석하였다. 국가과학기술지식정보서비스(NTIS)에 등록된 AI 기술 관련 국가 R&D 과제 정보(2018년 1월 ~ 2023년 6월)를 수집하고, LDA 토픽모델링을 통해 AI 분야의 세부기술 영역(주제)별 국가 R&D 규모 현황을 도출하였다. 둘째, AI 기술에 대한 국내 기업의 인식 및 수요 조사결과를 살펴본다. 여기서 AI 기술은 국가 R&D 과제 정보를 활용한 토픽모델링을 통해 분류한 12가지 AI 세부기술 영역으로 설정하였다. 셋째, 국가 AI R&D 현황 및 AI 기술에 대한 국내 기업의 인식·수요 조사결과를 비교 분석하였다. 포트폴리오 분석 틀을 활용해 세부 AI 기술 영역별 국가 R&D 추진 현황을 진단하였다. 넷째, 본 연구의 결론으로서 산업 수요 중심의 국가 AI R&D 전략성 강화방안과 AI 확산 및 활용 고도화를 위한 정책 제언을 제시하였다. 4. 연구 내용 및 결과 첫째, 국가 AI R&D 추진현황을 분석하였다. 토픽모델링 분석을 통하여 AI 기술 관련 국가 R&D 과제 정보에 내포된 12개 토픽을 추출하였다. 정부연구비를 기준으로, 국가 AI R&D 과제의 연도별 규모는 증가 추세이며, ‘딥러닝 기반 이미지 분석 및 처리 기술’ 토픽 관련 과제의 규모가 가장 큰 것으로 나타났다. 정부연구비 규모를 기준으로 한 순위 변화를 보면, ‘객체 탐지 및 추적을 위한 비전 딥러닝 기술’과 ‘머신러닝 기반 데이터 보안 및 보호 기술’이 2018년 대비 가장 크게 순위가 상승한 토픽인 것으로 나타났다. 둘째, AI 기술에 대한 산업계 인식 및 수요 현황을 파악하기 위한 설문조사를 실시하였다. 현재 산업에서의 활용도에 대해 전체 기업이 긍정적으로 응답한 비중이 가장 높은 기술은 ‘딥러닝 기반 이미지 분석 및 처리 기술’이고, 그 다음으로 ‘생성형 인공지능기술’, ‘딥러닝 모델 알고리즘 및 성능 최적화’, ‘머신러닝 기반 데이터 보안 및 보호 기술’ 순으로 긍정 응답 비중이 높았다. 3년 이후의 예상 활용도가 높은 기술로는 ‘딥러닝 모델 알고리즘 및 성능 최적화’, ‘딥러닝 기반 이미지 분석 및 처리 기술’, ‘머신러닝 기반 데이터 보안 및 보호 기술’ 순으로 긍정적 응답이 많았다. 현재 기술별 활용도와 3년 이후의 예상 활용도 응답 결과를 비교하여 기업들이 예상하는 기술별 미래 활용도 변화를 추정해보면, 활용도 변화가 가장 클 것으로 예상되는 기술은 ‘강화학습 기술’과 ‘인공지능 신뢰성 기술’이다. 기술별 수용(도입) 의사에 대한 조사에서는 ‘딥러닝 기반 이미지 분석 및 처리 기술’, ‘머신러닝 기반 데이터 보안 및 보호 기술’, ‘딥러닝 모델 알고리즘 및 성능 최적화’ 순으로 긍정 응답 비중이 높았다. 기술별 개발 시급성 정도로는 ‘딥러닝 기반 이미지 분석 및 처리 기술’, ‘머신러닝 기반 데이터 보안 및 보호 기술’, ‘객체 감지 및 추적을 위한 비전 딥러닝 기술’ 순으로 높았다. 이 외에도 중소기업을 기준으로 한 응답 결과를 별도로 살펴보고, 주요 산업별로도 나누어 살펴보았다. 셋째, 앞서 살펴본 국가 AI R&D 현황과 AI 기술에 대한 국내 기업의 인식·수요 조사 결과를 비교분석하였다. 최근 3년 기간의 정부연구비 규모와 중소기업이 응답한 미래 활용도, 개발 시급성 정도, 기술 수용도(수용 의사)를 중심으로 비교한 결과, ‘인공지능 신뢰성 기술’은 산업계 인식 수준이 높은 데 비해 국가 R&D 규모가 상당히 부족한 것으로 나타났으며, 전략적으로 국가 R&D 투자를 대폭 확대하는 방향으로 정책 및 투자 방향을 조정할 필요가 있다고 사료된다. ‘생성형 인공지능 기술’, ‘그래프 분석 기반 진단 및 예측 기술’, ‘경로 탐색 및 모델 최적화’ 기술, ‘강화학습 기술’ 등의 경우에도 국가 R&D 투자 확대가 필요한 영역이라고 판단된다. 5. 결론 본 연구의 결론으로서 산업 수요 중심의 국가 AI R&D 전략성 강화를 위한 방안을 다음과 같이 제시하였다. 첫째, 산업 활용도·수용성을 고려해 전략적으로 AI 관련 정책 및 R&D 투자를 추진하는 것이다. 본 연구에서는 국가 AI R&D 현황과 산업계 인식·수요를 비교하는 포트폴리오 분석을 통해 ‘인공지능 신뢰성 기술’, ‘그래프 분석 기반 진단 및 예측 기술’, ‘생성형 인공지능 기술’, ‘경로 탐색 및 모델 최적화’ 기술, ‘강화학습 기술’ 등 산업 활용도·수용성 측면에서 높은 인식 수준을 보인 데 비해 국가 R&D 규모가 부족한 세부 AI 기술분야를 도출하였다. 이러한 결과를 활용하여, 전략적으로 해당 분야의 육성을 위해 국가 R&D 투자 확대 및 정책적 지원을 추진할 필요가 있다고 판단된다. 둘째, AI 정책 및 R&D 전략 수립 과정의 산업계 인식·수요 반영 체계를 강화하는 것이다. 글로벌 AI 기술패권 경쟁에 대응하기 위한 차원에서, AI 기술생태계 자립성 확보의 선결과제인 산업에서의 활용도 있는 기술 공급을 통한 AI 확산을 촉진하는 데 대한 실효성 있는 정책 및 R&D 투자전략이 마련되기 위해서는 산업계 기술 인식·수요에 대한 보다 충분한 정보와 이해가 필수적이다. 따라서 규모있는 조사를 통해 AI 기술에 대한 기업들의 인식 및 수요를 객관적으로 파악하는 것이 바람직해보인다. AI 기술 육성을 위한 정책 및 R&D 투자계획을 수립·조정하는 과정에서 AI 세부기술 영역별 중요성 정도 및 파급효과를 평가하는 요소로서 동 조사 결과를 활용함으로써 산업 활용도·수용성 측면의 전략성 제고를 도모할 필요가 있다. 아울러 AI 확산 및 활용 고도화를 위한 정책 제언을 다음과 같이 제시하였다. 첫째, AI 기술 응용·활용 성공사례를 발굴하여 적극 보급할 필요가 있다는 것이다. 전반적으로, 국내 산업계에서는 이들 AI 세부기술의 미래 활용도, 유용성, 시급성 등 측면에 대해서는 긍정적 응답이 많았으나, 현재 활용도와 기술 수용에 대한 긍정 응답 비중은 상대적으로 낮은 경향을 보였다. 이러한 결과는 국내 기업들이 기술 자체의 우수성과 잠재력에 대한 높은 인식을 가지고 있으나, 그에 비해 실제 비즈니스 현장에서의 활용 측면에 대해서는 인식 및 이해가 다소 낮은 상황임을 암시한다고 판단된다. 따라서 AI 기술 응용활용에 대한 인식 수준 제고를 지원하기 위해 AI 도입 효과에 대한 실증적 연구(결과), 그리고 산업별 또는 분야별로 기업들이 참조할 수 있는 AI 도입 성공 사례들을 발굴하여 보급할 필요가 있다. AI 기술 도입 및 사업화 관련 지원사업의 주요 성과를 기업들이 체감할 수 있도록 사례화하고 홍보하는 방안을 고려해 볼 수 있다. 단지 정부 지원사업의 성과로부터 발굴된 사례들 간 중복성이 발생하거나 다양성이 부족할 수 있는 바, 정부 지원 사업 성과조사의 범위를 넘어서서 다양한 국내·외 사례들을 확보하기 위해 관련 조사·연구에 대한 범정부적 지원을 추진해볼 필요도 있다고 사료된다. 둘째, 기술수요에 대응할 수 있는 정책의 유연성 및 시의성을 확보할 필요가 있다. 본 연구의 조사 결과에 따르면, 현재 활용도가 높은 AI 기술이 앞으로도 활용도가 높을 것이라 전망하는 산업 분야가 있는 반면, 그렇지 않은 산업 분야도 있었다. 즉, 특정 AI 기술의 현재 산업 활용도는 높지만 향후에는 활용도가 낮아지고, 반대로 현재 활용도가 낮은 기술이 앞으로는 중요하게 활용될 것으로 예상하는 산업 분야가 있다는 것이다. 이러한 결과는 국가 AI R&D 정책과 제도가 산업 환경의 변화 및 고도화에 따른 기술수요의 차별화·다양화에 유연하게 대응할 수 있도록 설계되어야 함을 시사한다. 오늘날 AI의 기술변화 속도가 어느 다른 분야보다 빠르다는 점에 대해 이견이 없을 것이다. 이러한 측면을 감안할 때, AI 관련 국가 정책은 산업 환경 및 수요에 대한 지속적인 모니터링과 피드백·조정을 통해 높은 수준의 유연성 및 시의성을 확보할 필요가 있다고 하겠다.

  • ChatGPT의 등장과 함께 생성 AI 생태계 주도권 확보를 위한 경쟁이 갈수록 치열해지고 있다. 빅테크 기업들은 보다 저렴한 비용으로 고품질의 인공지능 서비스를 제공하기 위한 전략으로 생성 AI 생태계의 가치 사슬을 수직 통합하는 방향을 택하고 있다.(후략)

  • 그간 SW 안전은 사람의 신체적, 물리적 피해를 유발할 수 있는 분야를 중심으로 발전해 왔다. 그러나 SW의 영향력은 급격하게 확장되고 있다. SW 신기술로 볼 수 있는 인공지능, 블록체인, 메타버스 등은 세상을 혁신시키는 핵심 기술로 부상하고 있으나, 그 이면에는 다양한 사건 사고가 존재한다. 이러한 사고는 비단 신체적, 물리적 피해를 넘어 정신적, 경제적 피해를 유발시키고 있다. (후략)

  • 인공지능의 확산은 인공지능 윤리 및 신뢰성 이슈를 발생시키며 사회적 문제를 야기하였다. 이에 국내외 정부 및 기업, 국제 기관, 학계 등 전방위적으로 대응 정책을 마련중에 있다. 국내외 주요 정부와 국제 기관 등에서는 윤리적 인공지능 및 신뢰할 수 있는 인공지능 개발을 위한 권고안, 정책 보고서를 발간하고 있으며 주요 기업들 또한 신뢰할 수 있는 인공지능 개발을 위하여 기업 윤리 원칙 수립과 신뢰성 검증 도구 등의 개발을 촉진하고 있는 상황이다. 국내 또한 인공지능 신뢰성 확보를 위해 신뢰할 만한 인공지능 실현 전략 등을 추진하고 있다. 이렇듯 시의성 있는 정책 대응 방안 마련이 필요한 시점에서 인공지능 신뢰성 확보를 위한 국내외 정책 동향을 조사하고 분석하여 국내 인공지능 정책 고도화를 위한 시사점을 제공하고자 한다. (후략)

  • 생성AI빅뱅, 기회인가 위기인가?

    • 일시 : 2023년 8월 29일(화) 15:00~17:30
    • 장소 : 소프트웨어정책연구소 대회의실 (판교 글로벌R&D센터 A동 4층)
  • ChatGPT는 자연어를 이해하기 위해 방대한 양의 데이터로 훈련된 대규모 언어모델(LLM)로 출시 두 달 만에 1억 명의 가입자를 모으며 산업의 게임체인저로 부상했다. ChatGPT로 대표되는 언어모델을 포함한 다양한 생성 AI 모델은 높은 수준의 성능을 보여주며 검색 시장을 비롯해 다양한 산업에 영향을 미치고 있으며 크게 세 가지 분야에서 변화를 일으키고 있다. (후략)

  • 2023년 4월 3일 스탠퍼드大 인간중심 인공지능 연구소는 AI Index 2023 보고서를 발간했다. 보고서는 연구개발, AI 기술 성능, AI 기술 윤리, 경제, 교육, 정책·거버넌스, 다양성, 여론 등 8개의 장으로 구분하고 글로벌 데이터와 보고 자료들을 심층 분석하여 핵심 내용을 정리하였다. (후략)

  • 목차 Table of Contents

    ㅇ Stanford HAI AI Index 2023 개요 ㅇ AI 연구 개발: 중국 대학 주도의 양적 질적 성장세 지속 ㅇ AI 기술 성능: 전반적 기술 성능이 벤치마크의 정점에 도달, 윤리성 검증 노력도 증가 ㅇ AI 경제: AI 고용 수요는 여전히 증가세이나 투자와 활용률은 주춤 ㅇ AI 교육: AI가 초중등 교육에도 활용되는 등 AI 교육 보편화 ㅇ AI 거버넌스 및 정책: AI전략 수립은 정점을 지났고 AI 입법 활동은 증가 ㅇ AI분야의 다양성: AI분야에서의 성별·인종별 격차가 존재하지만 감소 추이 ㅇ AI관련 여론: AI를 긍정적으로 인식하는 경향이 비교적 우세

  • 목차 Table of Contents 1. 국내외 정책ㅇ미국 국립표준기술연구소(NIST), 인공지능 위험 관리 프레임워크 발표ㅇ 중국, ChatGPT 확산을 경계하는 인공지능 규제 도입 시사ㅇ 유럽, 인공지능 사용 확대에 따른 프라이버시 규제 당국 감시 강화ㅇ ChatGPT 사용 증가에 따른 AI 윤리 규제 필요성 대두 2. 기업·시장 동향ㅇ 구글, MusicLM을 통해 텍스트 기반 음악 생성 도구 상용화 가능성 시사ㅇ 디지털 검열에 따른 중국내 AI 기업의 정보 왜곡 우려 대두ㅇ 윤리적이고 책임감 있는 AI가 비즈니스 성공 열쇠로 부상 3. 고용·인력 동향ㅇ 채용AI, 편향성 우려로 여전히 활용엔 제한적으로 평가ㅇ 워싱턴포스트紙, AI알고리즘 해고 대상 선정 도구로 활용 편중 지적ㅇ 저널리즘에서 윤리적, 고용 문제를 야기하는 인공지능 사용 4. 기술·연구 동향ㅇ MIT 연구진, 폐암 위험을 감지할 수 있는 AI 모델 개발ㅇ 스탠포드大, 정치로비스트를 대신하는 ChatGPT 잠재력 연구ㅇ 브리티시컬럼비아大,AI로 의사 소견서를 분석하여 암 환자 생존 여부 예측ㅇ 美·中 연구진, 메타 LLAMA 기반 의료 챗봇 ChatDoctor 연구 결과 소개

    • 2023.03.16
    • 4506

    목차 Table of Contents 1. GPT-4 개요 2. GPT-4의 특징 및 ChatGPT(GPT-3.5)와 차이점 3. GPT-4의 활용(3rd Party) 4. 경과 및 한계점

  • 최근 ChatGPT의 등장은 산업 및 사회적으로 큰 파급력을 보이고 있다. 공개 두 달 만에 월 1억 명이 넘는 사용자 수를 확보했다. ChatGPT는 기존 GPT시리즈의 최신 버전으로 1,750억 개의 파라미터를 갖추고 문서요약, 프로그래밍, 보고서 작성 등 사람 수준의 결과를 생성하는 대화형 언어모델이다. 애초 자연어처리를 목적으로 하는 언어모델이 점차 발전하여 초거대 인공지능(AI)이 되고, 이제 범용성까지 갖추는 상황에 도달했다. 글로벌 주요 기업들은 이 초거대 AI 시장을 선점하기 위해 다방면으로 각축전을 벌이고 있다. 한편, 오늘날의 초거대 AI는 분명 기술적 혁신을 이룩했지만, 여전히 많은 과제를 안고 있다. 이 보고서에서는 ChatGPT를 중심으로 대규모 언어모델의 기술적 변화양상과 특징, 활용성, 한계점 등을 짚어보고, 산업 및 사회적 영향력과 향후 방향을 논의해보고자 한다. Executive Summary The recent appearance of ChatGPT is showing a great ripple effect on the industry and society. Within two months of its release, it has attracted over 100 million monthly users. ChatGPT is the latest version of the existing GPT series, an interactive language model with 175 billion parameters that generates human-level results such as document summarization, programming, and report writing. Originally designed for natural language processing, the language model has gradually evolved to become a hyper-scale artificial intelligence(AI) and has now reached the point of universality. Major global companies are competing to dominate this market. Meanwhile, while today's hyper-scale AI is certainly a technological breakthrough, it still faces many challenges. In this report, we will examine the technological changes, features, utility, and limitations of large-scale language models(LLMs), focusing on ChatGPT, and discuss their industrial and social impact and future directions.

  • 목차 Table of Contents 1. 국내외 정책 ㅇ 미국, 국가 인공지능연구자원(NAIRR) TF 최종 보고서 발표 ㅇ EU의 인공지능법, 생성AI 규제에 영향을 줄 것으로 전망 2. 기업·시장 동향 ㅇ 마이크로소프트, OpenAI에 100억 달러 추가 투자 결정 ㅇ 게티 이미지, 저작권 침해로 AI 이미지 생성기 개발사 스태빌리티AI 고소 ㅇ TechEU, 영화 제작에서 생성 AI 활용에 따른 혼란과 윤리 이슈 제기 ㅇ Moonshot, 사진 및 텍스트 생성 AI 관련 윤리 및 저작권 문제 제기 3. 고용·인력 동향 ㅇ 구직 및 경력 관리 도구로서 ChatGPT 활용 방안 ㅇ 마케팅 회사 코드워드(Codeword), 세계 최초 AI 인턴 채용 4. 기술·연구 동향 ㅇ 美 프리스턴 대학생, AI가 에세이를 썼는지 판별하는 앱 개발 ㅇ MIT, 美 공군 요원에게 AI 기초 교육 가능한 프로그램 개발 ㅇ 2023년 ICML 논문 제출에 ChatGPT 사용 금지 ㅇ ChatGPT, 사이버 범죄에 악용 가능성 확대

  • 목차 Table of Contents 들어가며 (Introduction) 1. AI의 위대한 변곡점 (AI’s Great Inflection Point) 2. 합성 환자의 잠재력 (The Potentials of Synthetic Patients) 3. 의료 서비스 개선, 환자 관리에서 비용 청구까지 (Upending Healthcare, from Patient Care to Billing) 4. 자연을 들여다보는 AI의 창 (An AI Window into Nature) 5. 일상 생활의 새로운 도구 (The New Tools of Daily Life) 6. 시는 최적화되지 않을 것: AI 시대의 창의성 (Poetry Will Not Optimize: Creativity in the Age of AI) 7. 생성 AI와 법치주의 (Generative AI and the Rule of Law) 8. 新캄브리아기: ‘과학적 흥분과 불안’ (The New Cambrian Era: ‘Scientific Excitement, Anxiety’) 9. 작업자들을 위한 증강(자동화가 아닌) (A Call to Augment – Not Automate – Workers) 10. 노동의 재발명 (The Reinvention of Work) 11. 교육계 ‘진행중인 재앙’ (In Education, a ‘Disaster in the Making’) 12. 교육 시스템의 불평등 해결 (Solving Inequalities in the Education System)

    • 2022.07.25
    • 42036

    최근 유튜브를 통해 배포되는 영상 중에서 딥페이크(DeepFake)를 활용한 영상들이 자주 보인다. 이들은 단순히 재미와 유머를 목적으로 하는 예도 있지만, 정치·사회 영역에서 가짜 뉴스를 퍼트려 혼란을 유발하거나, 특정 인물을 콘텐츠로 활용하여 음해하는 등 심각한 부작용을 초래한다.(후략)