ai 태그를 찾았습니다.
    • 2023.06.13
    • 4440
    • 일시 : 2023년 6월 27일(화) 14:30~17:00
    • 장소 : 판교 코사이어티 타운홀 (판교역 1번출구 판교테크원타워 3층)
  • ChatGPT는 자연어를 이해하기 위해 방대한 양의 데이터로 훈련된 대규모 언어모델(LLM)로 출시 두 달 만에 1억 명의 가입자를 모으며 산업의 게임체인저로 부상했다. ChatGPT로 대표되는 언어모델을 포함한 다양한 생성 AI 모델은 높은 수준의 성능을 보여주며 검색 시장을 비롯해 다양한 산업에 영향을 미치고 있으며 크게 세 가지 분야에서 변화를 일으키고 있다. (후략)

    • 2023.05.31
    • 18323

    생성AI(Generative AI)가 경제·사회의 판도를 바꾸는 변화의 동인(動因)으로 부상하고 있다. 생성AI는 AI가 대규모 데이터를 학습한 후 사용자의 프롬프트(Prompt)에 따라 텍스트, 이미지, 영상, 음악 등 다양한 디지털 재화를 생성하는 기술로 빠르게 시장을 형성 중이다. AI는 메타버스 구현에 핵심 역할을 하는바, 본 고에서는 최근 주목받는 생성AI와 메타버스의 융합으로 생기는 3대 변화 방향을 분석하고 시사점을 제시하였다. (후략)

  • 2023년 4월 3일 스탠퍼드大 인간중심 인공지능 연구소는 AI Index 2023 보고서를 발간했다. 보고서는 연구개발, AI 기술 성능, AI 기술 윤리, 경제, 교육, 정책·거버넌스, 다양성, 여론 등 8개의 장으로 구분하고 글로벌 데이터와 보고 자료들을 심층 분석하여 핵심 내용을 정리하였다. (후략)

  • 목차 Table of Contents 1. 국내외 정책ㅇ미국 국립표준기술연구소(NIST), 인공지능 위험 관리 프레임워크 발표ㅇ 중국, ChatGPT 확산을 경계하는 인공지능 규제 도입 시사ㅇ 유럽, 인공지능 사용 확대에 따른 프라이버시 규제 당국 감시 강화ㅇ ChatGPT 사용 증가에 따른 AI 윤리 규제 필요성 대두 2. 기업·시장 동향ㅇ 구글, MusicLM을 통해 텍스트 기반 음악 생성 도구 상용화 가능성 시사ㅇ 디지털 검열에 따른 중국내 AI 기업의 정보 왜곡 우려 대두ㅇ 윤리적이고 책임감 있는 AI가 비즈니스 성공 열쇠로 부상 3. 고용·인력 동향ㅇ 채용AI, 편향성 우려로 여전히 활용엔 제한적으로 평가ㅇ 워싱턴포스트紙, AI알고리즘 해고 대상 선정 도구로 활용 편중 지적ㅇ 저널리즘에서 윤리적, 고용 문제를 야기하는 인공지능 사용 4. 기술·연구 동향ㅇ MIT 연구진, 폐암 위험을 감지할 수 있는 AI 모델 개발ㅇ 스탠포드大, 정치로비스트를 대신하는 ChatGPT 잠재력 연구ㅇ 브리티시컬럼비아大,AI로 의사 소견서를 분석하여 암 환자 생존 여부 예측ㅇ 美·中 연구진, 메타 LLAMA 기반 의료 챗봇 ChatDoctor 연구 결과 소개

  • 목차 Table of Contents 1. 들어가며 2. 「GPTs are GPTs」 연구 배경 및 개요 3. 「GPTs are GPTs」 연구 방법 및 결과 4. 시사점

  • 세계 주요 경제개발 기구 및 글로벌 컨설팅 기관들은 공공부문의 인공지능 도입 및 활용범위의 확대는 업무 생산성 및 효율성 개선을 넘어, 국가 경제 전반에 긍정적 파급효과를 가져다줄 것으로 전망한다. 이런 AI도입의 순기능을 고려한 주요국 정부는 AI 기술을 공공부문에 적극 활용하여 사회문제를 해결하고, 업무 프로세스와 성과 혁신을 추구하고 있으나, AI 도입 및 확산은 더디게 진행되고 있다. (후략)

    • 2023.03.16
    • 5099

    목차 Table of Contents 1. GPT-4 개요 2. GPT-4의 특징 및 ChatGPT(GPT-3.5)와 차이점 3. GPT-4의 활용(3rd Party) 4. 경과 및 한계점

  • 최근 ChatGPT의 등장은 산업 및 사회적으로 큰 파급력을 보이고 있다. 공개 두 달 만에 월 1억 명이 넘는 사용자 수를 확보했다. ChatGPT는 기존 GPT시리즈의 최신 버전으로 1,750억 개의 파라미터를 갖추고 문서요약, 프로그래밍, 보고서 작성 등 사람 수준의 결과를 생성하는 대화형 언어모델이다. 애초 자연어처리를 목적으로 하는 언어모델이 점차 발전하여 초거대 인공지능(AI)이 되고, 이제 범용성까지 갖추는 상황에 도달했다. 글로벌 주요 기업들은 이 초거대 AI 시장을 선점하기 위해 다방면으로 각축전을 벌이고 있다. 한편, 오늘날의 초거대 AI는 분명 기술적 혁신을 이룩했지만, 여전히 많은 과제를 안고 있다. 이 보고서에서는 ChatGPT를 중심으로 대규모 언어모델의 기술적 변화양상과 특징, 활용성, 한계점 등을 짚어보고, 산업 및 사회적 영향력과 향후 방향을 논의해보고자 한다. Executive Summary The recent appearance of ChatGPT is showing a great ripple effect on the industry and society. Within two months of its release, it has attracted over 100 million monthly users. ChatGPT is the latest version of the existing GPT series, an interactive language model with 175 billion parameters that generates human-level results such as document summarization, programming, and report writing. Originally designed for natural language processing, the language model has gradually evolved to become a hyper-scale artificial intelligence(AI) and has now reached the point of universality. Major global companies are competing to dominate this market. Meanwhile, while today's hyper-scale AI is certainly a technological breakthrough, it still faces many challenges. In this report, we will examine the technological changes, features, utility, and limitations of large-scale language models(LLMs), focusing on ChatGPT, and discuss their industrial and social impact and future directions.

  • 목차 Table of Contents 1. 국내외 정책 ㅇ 미국, 국가 인공지능연구자원(NAIRR) TF 최종 보고서 발표 ㅇ EU의 인공지능법, 생성AI 규제에 영향을 줄 것으로 전망 2. 기업·시장 동향 ㅇ 마이크로소프트, OpenAI에 100억 달러 추가 투자 결정 ㅇ 게티 이미지, 저작권 침해로 AI 이미지 생성기 개발사 스태빌리티AI 고소 ㅇ TechEU, 영화 제작에서 생성 AI 활용에 따른 혼란과 윤리 이슈 제기 ㅇ Moonshot, 사진 및 텍스트 생성 AI 관련 윤리 및 저작권 문제 제기 3. 고용·인력 동향 ㅇ 구직 및 경력 관리 도구로서 ChatGPT 활용 방안 ㅇ 마케팅 회사 코드워드(Codeword), 세계 최초 AI 인턴 채용 4. 기술·연구 동향 ㅇ 美 프리스턴 대학생, AI가 에세이를 썼는지 판별하는 앱 개발 ㅇ MIT, 美 공군 요원에게 AI 기초 교육 가능한 프로그램 개발 ㅇ 2023년 ICML 논문 제출에 ChatGPT 사용 금지 ㅇ ChatGPT, 사이버 범죄에 악용 가능성 확대

  • 목차 Table of Contents 들어가며 (Introduction) 1. AI의 위대한 변곡점 (AI’s Great Inflection Point) 2. 합성 환자의 잠재력 (The Potentials of Synthetic Patients) 3. 의료 서비스 개선, 환자 관리에서 비용 청구까지 (Upending Healthcare, from Patient Care to Billing) 4. 자연을 들여다보는 AI의 창 (An AI Window into Nature) 5. 일상 생활의 새로운 도구 (The New Tools of Daily Life) 6. 시는 최적화되지 않을 것: AI 시대의 창의성 (Poetry Will Not Optimize: Creativity in the Age of AI) 7. 생성 AI와 법치주의 (Generative AI and the Rule of Law) 8. 新캄브리아기: ‘과학적 흥분과 불안’ (The New Cambrian Era: ‘Scientific Excitement, Anxiety’) 9. 작업자들을 위한 증강(자동화가 아닌) (A Call to Augment – Not Automate – Workers) 10. 노동의 재발명 (The Reinvention of Work) 11. 교육계 ‘진행중인 재앙’ (In Education, a ‘Disaster in the Making’) 12. 교육 시스템의 불평등 해결 (Solving Inequalities in the Education System)

    • 2023.03.02
    • 32245

    들어가며 오늘날 인공지능이 단순 기술을 넘어 경제적·사회적 패러다임을 근본적으로 변화시키고, 다양한 분야와의 융합을 통해 획기적인 혁신을 주도할 것이라는 데 이견을 달 사람은 많지 않을 것이다. AI 기술은 최근 10년 사이 폭발적인 속도로 발전해왔으며(Wang, 2020), 고도화된 AI 기술은 코로나19 팬데믹을 거치면서 디지털전환(digital transformation)을 주도하며 경제·사회의 모든 분야로 확산돼 우리 일상생활에 스며들었다. 이제 AI는 전문가 집단뿐 아니라 일반 대중들에게도 국가경쟁력의 핵심 원천으로 인식되고 있다. 예컨대 지난 2022년 특허청이 제57회 발명의 날을 맞아 실시한 대국민 투표에서 AI가 ‘대한민국 내일을 바꿀 발명 기술’ 1위로 선정된 바 있으며, 최근 과학기술정책연구원(STEPI)이 일반인 800명과 과학기술정책 전문가 200명을 대상으로 실시한 인식조사에서도 AI가 국가 성장을 위해 경쟁력 확보가 필요한 기술 분야 중 상위 1~2위(일반인 2위, 전문가 1위)를 차지하는 것으로 나타난 결과가 그 증거라고 할 수 있다. 한편, AI의 영향력이 급속도로 확대되는 가운데, 선진국을 중심으로 AI 기술패권 경쟁이 치열하게 진행되고 있다(정보통신기획평가원, 2022). 우리나라의 경우에도 이러한 경쟁에 대응함과 동시에 ‘인공지능 초일류 강국’으로의 도약을 위해 다양한 정책적 노력을 진행하고 있다. 최근에는 과학기술정보통신부가 「인공지능 일상화 및 산업 고도화 계획(안)」을 발표했으며(2023년 1월), AI 기본법 성격인 「인공지능산업 육성 및 신뢰 기반 조성에 관한 법률」이 국회 법안소위를 통과했다(2023년 2월). 그러나 혁신에 혁신을 거듭하고 있는 AI를 중심으로 차세대 신·융합기술 및 시장 선점을 위한 국가 간 경쟁이 날로 격화되고 있는바, 국가적 역량을 결집해 한층 더 적극적으로 대응해야 할 필요가 있다고 하겠다. 본고에서는 AI 정책 기획·평가, 중장기 방향 설정 등의 정책 활동에 활용될 수 있는 기초자료 생성을 목적으로, 국가별 정보통신기술(ICT) 수준을 정량화한 통계 자료를 바탕으로 우리나라 및 주요국의 AI 기술수준 변화 추이를 살펴보고자 한다. 구체적으로, 정보통신기획평가원(IITP)에서 매년 실시하고 있는 ‘ICT 기술수준조사’의 최근 결과를 포함해 지난 6년(2016년~2021년) 간의 AI 분야 조사 결과를 발췌·종합해 연도별 AI 기술수준 변화 추이를 도출한다. 기술격차 변화 추이 기술격차는 조사시점 기준 세계 최고기술 보유국의 기술수준에 도달하는 데 소요될 것으로 예상되는 시간을 의미한다. ‘ICT 기술수준조사’에서 AI 분야의 세계 최고기술 보유국은 미국으로 나타났으며, 미국 대비 AI 분야 기술격차는 중국(0.8년), 유럽(1.0년), 한국(1.3년), 일본(1.5년) 순으로 적게 나타났다. 변화 추이를 보면, 우리나라의 AI 분야 기술격차는 최근 6년 간 축소 추세인 것으로 나타났다. 우리나라의 미국 대비 AI 분야 기술격차는 2016년 약 2.2년으로 평가됐으나, 2021년에는 약 1.3년으로 0.9년만큼 축소된 것으로 파악됐다. 기술격차 측면에서 가장 큰 변화가 있었던 국가는 중국으로 확인됐다. 중국의 미국 대비 AI 분야 기술수준은 2016년 약 2.3년에서 2021년 약 0.8년으로 1.5년만큼 축소된 것으로 파악됐다. 반면에 일본과 유럽의 경우, 미국 대비 AI 분야 기술격차에 거의 변화가 없는 것으로 나타났다. 기술수준 변화 추이 ‘ICT 기술수준조사’에서 기술수준은 조사시점 기준 세계 최고기술 보유국 대비 상대적 기술수준을 의미하며, 세계 최고기술 보유국인 미국을 100으로 해 각 국가별 기술수준을 평가·측정한 것이다. 기술수준의 경우, 해당 분야에 대한 종합적 평가뿐 아니라 기술개발 단계별(기초, 응용, 사업화) 평가가 함께 이루어진다. 전반적 기술수준 전반적인 AI 분야 기술수준은 2021년 기준 미국(100)이 가장 높고, 그다음으로 중국(93.3), 유럽(92.9), 한국(89.1), 일본(86.9) 순으로 조사됐다. 여기서 2021년에 두 번째로 높은 기술수준을 보유한 것으로 조사된 중국이 2016년에는 우리나라를 포함한 주요국 중 가장 낮은 기술수준을 보유한 국가라 평가받았었다는 점이 주목할 만하다. 중국의 2021년 AI 분야 상대적 기술수준은 2016년 대비 21.5 만큼 향상됐다(2016년 71.8 → 2021년 93.3). 우리나라의 경우에도 앞서 언급한 중국 못지않은 빠른 속도로 AI 분야 세계 최고기술 보유국을 추격하고 있는 것으로 나타났다. 2016년 우리나라의 AI 기술수준(총괄)은 세계 최고기술 보유국 대비 73.9 수준이었으나, 매년 향상돼 2021년 89.1 수준으로 조사됐다(2016년 73.9 → 2021년 89.1). 기초단계 기술수준 기초단계 AI의 기술수준은 2021년 기준 미국(100)이 가장 높고, 그다음으로 유럽(95.7), 중국(92.0), 한국(87.7), 일본(85.6) 순으로 조사됐다. 이 중 중국이 기초단계 AI의 기술수준이 가장 크게 향상된 국가인 것으로 나타났다. 중국의 2021년 기초단계 AI의 상대적 기술수준은 2016년 대비 20.7 만큼 향상됐다(2016년 71.3 → 2021년 92.0). 한편, 우리나라의 기초단계 AI 기술수준 또한 크게 향상된 것으로 나타났다. 2016년 우리나라의 기초단계 AI 기술수준은 세계 최고기술 보유국 대비 73.6 수준이었으나, 매년 향상돼 2021년 87.7 수준까지 추격한 것으로 파악됐다. 유럽의 기초단계 AI 기술수준은 지속적으로 미국을 추격하고 있는 데 반해, 일본의 경우 2019년부터 오히려 미국과의 격차가 확대되고 있는 것으로 조사됐다. 응용단계 기술수준 응용단계 AI의 기술수준은 2021년 기준 미국(100)이 가장 높고, 그다음으로 중국(93.9), 유럽(93.3), 한국(90.6), 일본(87.4) 순으로 조사됐다. 이 중 중국의 응용단계 AI 기술수준이 2016~2021년 사이 가장 크게 향상된 것으로 나타났다(2016년 72.2 → 2021년 93.9). 우리나라의 경우에도 응용단계 AI 기술수준이 크게 향상된 것으로 파악됐다. 2016년 우리나라의 응용단계 AI 기술수준은 세계 최고기술 보유국 대비 74.5 수준이었으나, 매년 향상돼 2021년 90.6 수준까지 추격한 것으로 파악됐다. 반면에, 세계 최고기술 보유국인 미국 대비 일본의 응용단계 AI 기술수준은 2019년부터 지속 저하되고 있는 것으로 나타났다(2019년 89.0 → 2020년 88.1 → 87.4). 유럽의 응용단계 AI 기술수준은 2020년에 전년 대비 소폭 저하됐으나(2019년 92.8 → 2020년 92.1), 2021년 다시 향상되는 추세로 전환된 것으로 조사됐다(2020년 92.1 → 2021년 93.3). 사업화단계 기술수준 사업화단계 AI의 기술수준은 2021년 기준 미국(100)이 가장 높고, 그다음으로 중국(94.2), 유럽(89.7), 한국(89.2), 일본(87.6) 순으로 조사됐다. 이 중 중국의 사업화단계 AI 기술수준 성장세가 가장 두드러지는 것으로 나타났다. 구체적으로, 중국의 사업화단계 AI의 상대적 기술수준은 2016년 71.7에서 2021년 94.2로 약 22.5 만큼 향상된 것으로 확인됐다. 우리나라의 사업화단계 AI 기술수준은 앞서 언급한 중국과 마찬가지로 크게 향상된 것으로 나타났다. 2016년 우리나라의 사업화단계 AI 기술수준은 세계 최고기술 보유국 대비 73.5 수준이었으나, 매년 향상돼 2021년 89.2 수준으로 조사됐다(2016년 73.5 → 2021년 89.2). 이처럼 우리나라가 가파른 상승세를 보인 것과 다르게, 유럽의 사업화단계 AI 기술수준은 2016~2021년 사이에 거의 변화가 없었던 것으로 나타났다. 일본의 사업화단계 AI 기술수준의 경우, 응용단계와 마찬가지로 2019년부터 지속 저하되고 있는 것으로 나타났다(2019년 88.3 → 2020년 88.0 → 87.6). 맺음말 객관적으로, 우리나라의 AI 기술수준은 아직 세계 최고기술 보유국인 미국과 중국, 유럽 등에 비해 다소 미흡한 것이 사실이다. 그러나 우리나라는 지난 몇 년 사이에 AI 기술 분야에서 눈부신 발전을 이룩했으며, 주요 선진국을 빠르게 추격해왔다. 그리고 현재 우리나라가 AI 분야에서 선진국들을 위협하는 수준에 이르렀다고 보는 것이 무리는 아니다. 더욱이 우리나라의 AI 기술이 2019년까지는 일본에 비해 낮은 수준이었으나, 2020년에는 일본과 유사한 수준에 도달해 결국 그다음 해인 2021년에 일본을 추월한 것으로 나타난 점은 우리나라 과학기술정책의 고무적인 성과로 평가할 만하다. 그럼에도 불구하고, 우리나라가 직면하고 있는 AI 기술패권 경쟁은 여전히 현재진행형이며, 인간 수준의 차세대 AI 시대가 다가오면서 이러한 경쟁이 더욱 치열하게 전개될 것으로 전망되고 있다. 이는 결코 반드시 암울한 이야기만은 아니며, 우리나라가 그간의 성과를 넘어 AI 글로벌 강국으로 도약하는 절호의 기회가 될 수 있다고 사료된다. 물론 이러한 기회를 도약의 발판으로 만들기 위해서는 기 축적한 기술역량 및 산업기반의 결집·연계를 강화하고, 주요 선진국이 리드하고 있는 AI 경쟁 국면에 선제적·적극적으로 대응함으로써 양적 성장의 한계를 벗어나 글로벌 시장에서 확고한 지위를 구축하는 질적 성장을 달성해야 할 것이다. 이를 위해서는 AI 및 AI 융합 R&D에 대한 국가 차원의 투자를 지속 확대함과 더불어 AI 융합 확산을 위한 새로운 법·제도 및 정책방안 발굴, 장기적 AI 국가 전략 수립 및 주기적 개정 추진, 그리고 AI 정책 개발을 뒷받침하는 기초자료의 고도화를 위한 조사 및 정책연구 확대 등이 필요하다고 하겠다.

    • 2023.01.10
    • 3041

    목차 Table of Contents 1. 국내외 정책 ㅇ 美-EU 무역기술위원회(TTC), AI 로드맵 발표 ㅇ 美 로펌, EU의 AI 책임 지침의 소송 절차 인식 확산 노력 ㅇ 유엔환경계획(UNEP), 기후 문제 해결 및 대응을 위해 AI 활용 2. 기업·시장 동향 ㅇ 非유럽권의 글로벌 AI 시장 독점 심화 ㅇ 엔비디아와 마이크로소프트, AI 슈퍼컴퓨터 구축을 위해 협력 ㅇ 메타의 대규모 언어모델(LLM) 갤럭티카 사용 조기 종료 3. 고용·인력 동향 ㅇ 싱가포르, AI 인재 양성 및 유치에 5천만 달러 투자 ㅇ 美조지타운대학교, 중국의 AI 인력 수요 현황 분석 4. 기술·연구 동향 ㅇ 구글, 전 세계 1,000개 언어 지원 가능한 거대 AI 언어모델 개발 계획 ㅇ 영국, 구제금융에 관한 정부 결정을 지원하는 AI 도구 개발 ㅇ 허깅페이스(HuggingFace), AI 이미지 생성기의 편향성 탐색 도구 개발

    • 2022.12.20
    • 6883

    블록체인(Blockchain)은 특정인의 신원을 인증하거나 금전을 이체하는 것처럼 ‘신뢰성 있는 서비스 구현’할 때 활용하기 적합한 분산화 기술이다. (후략)

    • 2022.12.02
    • 2510

    목차 Table of Contents 1. 국내외 정책 2. 기업·시장 동향 3. 고용·인력 동향 4. 기술·연구 동향

    • 2022.11.09
    • 3102
    목차 Table of Contents 1. 국내외 정책 2. 기업·시장 동향 3. 고용·인력 동향 4. 기술·연구 동향
    • 2022.10.18
    • 2961

    목차 Table of Contents 1. 국내외 정책 2. 기업·시장 동향 3. 고용·인력 동향 4. 기술·연구 동향

  • 국내외를 막론한 조사환경 악화와 데이터 확보 유형의 증가는 기존 통계자료의 대안을 고려하는 계기로 작용하고 있다. (후략)

    • 2022.09.08
    • 2688

    목차 Table of Contents 1. 국내외 정책 2. 기업·시장 동향 3. 고용·인력 동향 4. 기술·연구 동향

    • 2022.08.10
    • 4087

    목차 Table of Contents 1. 국내외 정책 2. 기업·시장 동향 3. 고용·인력 동향 4. 기술동향