SPRi Brain
유재흥
AI정책연구실
유재흥책임연구원
031-739-7352
연구성과물
  • 목차 Table of Contents Ⅰ. 인공지능 산업 동향 브리프 1. 정책/법제 ▹ 미국 민권위원회, 연방정부의 얼굴인식 기술 사용에 따른 민권 영향 분석 ▹ 미국 백악관 예산관리국, 정부의 책임 있는 AI 조달을 위한 지침 발표 ▹ 유로폴, 법 집행에서 AI의 이점과 과제를 다룬 보고서 발간 ▹ OECD, 공공 부문의 AI 도입을 위한 G7 툴킷 발표 ▹ 세계경제포럼, 생성AI 시대의 거버넌스 프레임워크 제시 2. 기업/산업 ▹ CB인사이츠 분석 결과, 2024년 3분기 벤처 투자 31%가 AI 스타트업에 집중 ▹ 메타, 동영상 생성AI 도구 ‘메타 무비 젠’ 공개 ▹ 메타, 이미지와 텍스트 처리하는 첫 멀티모달 AI 모델 ‘라마 3.2’ 공개 ▹ 앨런AI연구소, 벤치마크 평가에서 GPT-4o 능가하는 성능의 오픈소스 LLM ‘몰모’ 공개 ▹ 미스트랄AI, 온디바이스용 AI 모델 ‘레 미니스트로’ 공개 ▹ 카카오, 통합 AI 브랜드 겸 신규 AI 서비스 ‘카나나’ 공개 3. 기술/연구 ▹ 2024년 노벨 물리학상과 화학상, AI 관련 연구자들이 수상 ▹ 미국 국무부, AI 연구에서 국제협력을 위한 ‘글로벌 AI 연구 의제’ 발표 ▹ 일본 AI안전연구소, AI 안전성에 대한 평가 관점 가이드 발간 ▹ 구글 딥마인드, 반도체 칩 레이아웃 설계하는 AI 모델 ‘알파칩’ 발표 ▹ AI21 CEO, AI 에이전트에 트랜스포머 아키텍처의 대안 필요성 강조 4. 인력/교육 ▹ MIT 산업성과센터, 근로자 관점에서 자동화 기술의 영향 조사 ▹ 다이스 조사, AI 전문가의 73%는 2025년 중 이직 고려 ▹ 가트너 예측, AI로 인해 엔지니어링 인력의 80%가 역량 향상 필요 ▹ 인디드 조사 결과, 생성AI가 인간 근로자 대체할 가능성은 희박 Ⅱ. 주요 행사 ▹NeurIPS 2024 ▹GenAI Summit Maroc 2024 ▹AI Summit Seoul 2024

  • 최근 몇 년간 인공지능(AI) 기술의 발전은 챗GPT의 출시 이후 거대 언어 모델(LLM) 개발 경쟁을 거치며 가속화되었다. 현재 공개된 AI 모델들의 성능은 특정 분야에서는 이미 인간의 능력을 뛰어넘었고, 이에 따라 활용 범위 또한 급격히 확장되었다. 특히 생성 AI를 기반으로 하는 범용 AI는 제조, 의료, 금융, 교육 등의 여러 산업 분야에서 활용되고 있다. 하지만, AI 기반의 서비스들이 다양한 이점을 제공하는 한편, 고성능 AI에 대한 접근성의 향상으로 인해 새로운 위험에 대한 우려 또한 증가했다. 이에 따라, 기존 AI 신뢰성, 책임성, 윤리 등의 논의와 더불어, ‘AI 안전’이 더욱 중요해졌다. 악의적인 사용, 오작동과 같은 위험들이 실제 피해까지 야기하고 있는 만큼, AI의 안전 확보를 위한 대응책 마련이 시급해진 상황이다. 앞으로 등장할 더 강력한 성능을 가진 프론티어 AI 모델은 의도치 않은 결과의 도출, 제어 불가, 사회적 악영향 등 여러 잠재적인 위험을 포함할 가능성이 높아, 규제와 지침 마련을 비롯하여 다양한 국제적 노력이 이루어지고 있다. 각 국의 정부, 기업 등 이해관계자들은 AI의 안전성을 확보하기 위해, 위험을 식별하여 평가 기준을 마련하고, 안전한 AI 개발 및 배포와 위험 대응책을 마련하기 위해 노력하고 있다. 최근 연구들에서는 사고 사례나 발생 가능한 시나리오에 따른 위험들을 분류하여 제시하고 있다. 하지만, 연구마다 다양한 위험 분류 체계를 제시하고 있어, 합의된 AI 안전 평가 체계를 마련하기에는 아직 더 많은 논의가 필요한 상황이다. 미국, 영국, 일본 등은 AI 시스템의 안전성 확보를 위해 AI 안전연구소를 통해 AI 안전 및 위험 연구, 위험성 평가, 안전한 AI 개발·구현을 위한 기준 마련 등의 기능을 수행 중이다. 대표적으로 AI 위험 관리 프레임워크(美), AI 안전에 관한 과학 보고서(英) 등을 통해 AI의 위험에 대한 대응 방안을 제시하고 있으며, 한국도 설립될 AI 안전연구소를 통해 AI 안전 수요에 대응할 예정이다. 본 보고서에서는 AI 안전과 관련된 개념을 정리하고, 최근 수행된 연구들이 제시하고 있는 AI 위험 유형 및 요인을 정리하여, 사례와 함께 분석함으로써 앞으로의 AI 위험 대응에 관한 정책적 시사점을 제공하고자 한다. Executive Summary Advancements in artificial intelligence (AI) technology have accelerated, particularly following the launch of ChatGPT, which has triggered a competitive race in the development of large language models (LLMs). The performance of currently available AI models has already surpassed human capabilities in certain domains, leading to a rapid expansion in their areas of application. General-purpose AI, especially those based on generative AI, is now being utilized across various industries, including manufacturing, healthcare, finance, and education. However, while AI-based services offer numerous benefits, the increased accessibility of high-performance AI has also raised concerns about new risks. As a result, alongside existing discussions on AI reliability, accountability, and ethics, "AI safety" has become an increasingly critical issue. Given that risks such as malicious use and malfunctions are already causing real harm, there is an urgent need for measures to ensure AI safety. Governments, corporations, and other stakeholders are working to ensure the safety of AI by identifying risk factors, establishing evaluation criteria, and developing measures for the safe development and deployment of AI, as well as for responding to potential risks. Recent studies have classified risk factors based on accident cases and possible scenarios. However, since each study presents different classification, further discussion is needed to establish a common AI safety evaluation framework. The United States, the United Kingdom, and Japan are addressing safety of AI through dedicated agency, which focus on AI risk research, risk assessments, and the development of standards for the safe creation and implementation of AI systems. Notable examples include the AI Risk Management Framework (USA) and the Science Report on AI Safety (UK), both of which propose strategies for addressing AI-related risks. Korea also plans to address AI safety demands through the establishment of its own AI safety institute. This report aims to organize the concepts related to AI safety, summarize the risk factors identified in recent studies, and analyze these factors along with real-world cases to offer policy implications for future AI risk response strategies.

  • 목차 Table of Contents Ⅰ. 인공지능 산업 동향 브리프 1. 정책/법제 ▹ 미·영·EU, 법적 구속력 갖춘 유럽평의회의 AI 국제조약에 서명 ▹ 미국 캘리포니아 주지사, AI 규제법안 「SB1047」에 거부권 행사 ▹ 호주 의회, 동의 없는 딥페이크 음란물 공유를 처벌하는 법안 통과 ▹ UN, ‘인류를 위한 AI 거버넌스’ 최종 보고서 발표 2. 기업/산업 ▹ 앤스로픽과 오픈AI, 미국 AI 안전연구소와 모델 평가 합의 ▹ 오픈AI, 추론에 특화된 AI 모델 ‘o1-프리뷰’ 출시 ▹ 메타의 AI 모델 ‘라마’, 다운로드 수 3억 5천만 회 달성하며 활발한 생태계 형성 ▹ 구글, AI 신기능 ‘젬스’와 이미지 생성 모델 ‘이마젠 3’ 출시 ▹ 구글, C2PA 표준 적용으로 AI 생성물의 투명성 향상 추진 ▹ 마이크로소프트, 오픈소스 소형 언어모델 ‘파이 3.5’ 공개 ▹ 하이퍼라이트, 오류를 자체 수정하는 ‘리플렉션 70B’ 오픈소스 모델 공개 3. 기술/연구 ▹ 영국 옥스퍼드大 연구 결과, 글로벌 AI 칩 분포의 양극화 현상 심각 ▹ 메타, LLM의 품질과 정확성을 평가하는 ‘자가학습 평가자’ 개발 ▹ 코히어 연구, LLM 사전학습에 코드 데이터 포함 학습시 LLM의 성능 향상 확인 ▹ 중국 연구진, 재판 시뮬레이션으로 LLM의 법률 역량 향상하는 기법 개발 ▹ AI 연구자들, 벤치마크 ‘챗봇 아레나’의 편향과 투명성 부족 지적 4. 인력/교육 ▹ 영국 정부, AI 교육기업 대상 ‘콘텐츠 스토어’ 프로젝트 발표 ▹ 유고브 조사 결과, 미국 근로자들 AI의 일자리 영향에 엇갈린 의견 표시 ▹ IBM 기업가치연구소, ‘생성 AI 시대 인적 잠재력 재해석’ 보고서 발간 ▹ 서비스나우, AI 도입으로 영국에서 61만 개 일자리 창출 전망 Ⅱ. 주요 행사 ▹Cypher 2024 21 ▹AI World Congress 2024 21 ▹ML and AI Model Development and Governance 21

    • 2024.09.04
    • 2313

    목차 Table of Contents Ⅰ. 인공지능 산업 동향 브리프 1. 정책/법제 ▹ 미·영·EU, 생성 AI의 공정한 경쟁환경 조성을 위한 공동 성명 발표 ▹ 미국 통신정보관리청, 오픈소스 기반모델의 위험에 대한 모니터링 촉구 ▹ 중국 베이징市, AI 플러스 행동계획(2024~2025) 발표 ▹ 독일 연방정보기술보안청, AI 시스템의 투명성에 관한 백서 발간 2. 기업/산업 ▹ 오픈AI, AI 기반 검색엔진 ‘서치GPT’ 프로토타입 공개 ▹ 메타, 폐쇄형 첨단 AI 모델과 대등한 성능의 오픈소스 모델 ‘라마 3.1’ 공개 ▹ 구글, 소형 오픈소스 모델 ‘젬마2 2B’ 공개 ▹ 메타와 구글, 환각과 딥페이크 등 AI 이슈 대응 ▹ 피규어AI, 최신 휴머노이드 로봇 ‘피규어 02’ 공개 ▹ xAI, ‘그록-2’ 출시 이후 이미지 생성 논란 확산 3. 기술/연구 ▹ 미국 국가과학기술위원회, 2020년~2024년 AI R&D 경과보고서 발간 ▹ 구글 딥마인드, 생성 AI의 오용 현황 분석 ▹ 애플, 애플 인텔리전스의 기반모델 개발 프로세스 공개 ▹ 네이처, AI 생성 데이터로만 학습한 AI 모델의 붕괴 위험 증가 경고 논문 게재 ▹ 영국 에이다 러브레이스 연구소, AI 안전성 평가의 개선 필요성 제기 ▹ 사카나 AI, 과학 연구를 자동화하는 ‘AI 사이언티스트’ 개발 4. 인력/교육 ▹ 유네스코, 교육에서 생성 AI의 기회와 위험 분석 ▹ 세계경제포럼 4차산업혁명센터, AI로 인한 기술 실업 가능성이 희박하다고 전망 ▹ AI 기반 ICT 인력 컨소시엄, ICT 일자리의 92%에 AI의 영향 예측 ▹ 오픈AI, 챗GPT 부정행위 탐지 도구 개발 후 공개 유보 Ⅱ. 주요 행사 ▹Generative AI World 2024 ▹AI Expo Europe ▹Big Data & AI World

    • 2024.08.13
    • 1292

    목차 Table of Contents Ⅰ. 인공지능 산업 동향 브리프 1. 정책/법제 ▹ 국제통화기금(IMF), 세계 AI 준비 현황지도 공개 ▹ OECD, AI 분야의 데이터 거버넌스와 개인정보보호 협력 연구 ▹ 글로벌 AI 파트너십(GPAI), OECD-GPAI 통합 운영에 합의 ▹ 과학기술정보통신부, AI 분야 규제샌드박스 과제 적극 발굴 추진 ▹ 프랑스 경쟁관리국, 생성 AI 분야의 경쟁 활성화를 위한 권고사항 제시 ▹ 중국 정부, AI 표준화 체계 구축 지침 발표 ▹ 대만 국가과학기술위원회, AI 기본법 초안 발표 2. 기업/산업 ▹ EU 경쟁 당국, 구글-삼성 AI 협업에 반독점 조사 검토 ▹ 2024년 상반기 유럽 생성 AI 스타트업 투자 규모 19억 유로 ▹ 구글, 제미나이 1.5 플래시 및 오픈소스 모델 젬마 2 정식 출시 ▹ 오픈AI, 비용 효율적인 소형 AI 모델 ‘GPT-4o 미니’ 출시 ▹ 바이두, 최신 AI 모델 ‘어니 4.0 터보’ 공개 ▹ 중국 상하이市 법학회, 세계인공지능대회에서 휴머노이드 로봇 거버넌스 지침 발표 ▹ LG AI연구원, 오픈소스 AI 모델 ‘엑사원(EXAONE) 3.0’ 공개 3. 기술/연구 ▹ 세계경제포럼, 과학적 발견을 위한 AI 등 10대 신흥기술 선정 ▹ ETRI, 데이터 분석 및 머신러닝을 위한 데이터 품질 국제표준 제정 ▹ 구글 딥마인드, 제미나이를 활용한 자연어 기반 로봇 학습 연구 결과 공개 4. 인력/교육 ▹ SAS 조사, 생성 AI 사용은 중국이 가장 앞서나 성숙도는 미국이 우위 Ⅱ. 주요 행사 ▹ECCV 2024 ▹World Summit AI ▹AI WORLD 2024

  • 최근 전 산업과 일상에서 AI의 활용이 폭넓게 이뤄지고 있으나, 한편으로는 AI 위험에 대한 우려 및 AI로 인한 사건 수가 증가하면서 AI 위험 대응 요구도 확대되고 있다. 이에 따라 각국 정부와 학계, 업계 등 이해당사자가 AI의 위험을 방지하고 안전하고 신뢰할 수 있는 AI를 개발 및 도입하기 위해 노력하고 있다. 본 보고서에서는 액센츄어와 스탠퍼드 대학교가 실시한 글로벌 기업의 책임 있는 AI에 대한 조치 인식 조사를 인용하여 책임 있는 AI 영역별 대응 수준을 진단하고, 주요 기업별 전담 조직 및 AI 안전 프레임워크 현황 사례를 조사하여 기업의 구체적인 책임 있는 AI에 관한 노력에 대해 살펴보았다. 액센츄어와 스탠퍼드 대학교의 조사 결과, 기업은 개인정보 보호 및 데이터 거버넌스, 신뢰성 및 보안, 투명성 및 설명 가능성, 공정성 등 책임 있는 AI의 요인별 대응을 추진하고 있으며, 개인정보 보호 및 데이터 거버넌스 측면의 대응 수준이 가장 높게 진단되었다. 그러나, AI 모델 발전에 따른 결과 설명의 어려움, 국가별 공정성의 기준에 대한 차이 등의 사유로 투명성 및 설명 가능성, 공정성 부문에 대한 향후 조치를 향상시킬 필요가 있다. 국내외 기업별 사례 조사 결과, 주요 기업들은 AI 모델의 평가와 개발·배포 여부에 대한 의사결정을 할 수 있는 전담 조직을 설립하고, 전담 조직에 의해 AI의 위험성을 정의하고 평가하는 체계를 구축하고 있다. 국내 기업은 계열사 간 컨센서스를 위한 협의체를 운영하는 특징이 있으며, 산업으로의 AI 적용을 위한 과제별 위험 요인을 분류하고 평가하는 체계를 도입하고 있다. 글로벌 조사와 유사하게, 공정성 부문은 제도적인 가이드라인 수준으로 기업의 실질적인 조치가 미흡한 상황으로 향후 개선이 필요하다. 본 보고서의 결과는 각국 정부가 AI 규제에 관한 논의와 실행을 본격화되는 가운데, 기업들이 전담 조직을 구축하고, AI 안전 프레임워크를 수립 및 준수함으로써 책임 있는 AI를 정착시키기 위해 노력하고 있음을 보여준다. 앞으로 국내외 기업들의 안전하고 책임 있는 AI 개발 및 사용을 위한 지속적인 노력이 요구된다. Executive Summary Recently, AI has been widely utilized in all industries and daily life, but on the other hand, as concerns about AI risks and the number of incidents caused by AI increase, the demand for AI risk response is also expanding. Consequently, all stakeholders, including governments, academia, and industry, are working to prevent AI risks and ensure the development and implementation of safe and trustworthy AI. This report cites a survey of global companies' awareness of responsible AI measures conducted by Accenture and Stanford University to diagnose the level of response in each area of responsible AI, and investigates case studies of dedicated organizations and frameworks in major companies to explore specific efforts towards responsible AI. According to research conducted by Accenture and Stanford University, Global survey results show that companies are pursuing responses to responsible AI factors such as privacy protection and data governance; reliability and security; transparency and explainability; and fairness. The response level in privacy protection and data governance was diagnosed as the highest. However, due to difficulties in explaining the result of advanced AI models, challenges in processing different languages, and differences in fairness standards across countries, there is a need for improved measures in transparency, explainability, and fairness in the future. As a result of the survey of domestic and global companies, major companies are establishing dedicated organizations capable of evaluating AI models and making decisions on whether to develop and distribute them, and are establishing a system to define and evaluate the risks of AI through dedicated organizations. Domestic companies are characterized by operating a consultative body for consensus among affiliates, and are introducing a system to classify and evaluate risk factors for each task for applying AI to the industry. Similar to the Accenture survey, the fairness sector is at the level of institutional guidelines, and actual measures by companies are insufficient, so it can be said that improvement is needed in the future. The results of this report show that while governments around the world are discussing and implementing AI regulations, companies are making efforts to establish responsible AI by establishing dedicated organizations and establishing and complying with frameworks. In the future, efforts will be required to develop and use safe AI technology across the entire AI ecosystem.

  • 생성AI의 확산과 함께 인공지능 기술이 가진 잠재적 위험에 대한 우려가 고조되고 있다. 생성AI의 부정확성, 결과 해석을 어렵게 하는 블랙박스 모델과 같은 기술적 한계와 딥페이크, 사이버 공격 등 기술 오용으로 인한 사회적 피해에 대한 긴장이 높아지고 있다. 산학계의 인공지능 전문가들조차 인공지능이 인간이 이해할 수 없는 초지능으로 급속히 발전하면 자율 성장, 통제 상실 가능성이 높아져 인류의 실존을 위협할 수 있다고 경고한다. 이러한 상황에서 유럽연합은 2024년 5월 세계 최초로 인공지능 규제법인 인공지능법을 제정하였고, 미국은 2023년 10월 행정명령을 발동해 인공지능의 안전한 개발과 보급을 유도하고 있다. 2023년 11월 영국에서 세계 최초로 개최된 인공지능 안전성 정상회의는 인공지능 안전성 확보를 위한 국제 사회의 동참을 만들어 내는 계기가 되었다. 구체적으로 영국, 미국, 일본은 AI안전연구소를 설립하고, 첨단 AI의 안전성 테스트를 위한 프레임워크 개발과 정보, 인력 교류, 표준화에 상호 협력하기로 했다. 2024년 5월 제1차 인공지능 안전성 정상회의 후속으로 진행된 한국-영국 공동 주최 AI 서울 정상회의에서는 우리 정부도 AI 안전연구소 설립을 공식화하고 주요국과 함께 AI 안전성 확보를 위한 국제협력에 적극적 의지를 표명하였다. 향후 AI 안전 확보를 위한 정부의 역할이 더욱 중요해질 것으로 예상되는 가운데, AI 안전연구소는 AI 안전성 테스트 방법 및 프레임워크 개발, AI 안전성 확보를 위한 원천기술 개발 및 표준화, 그리고 이를 위한 정책연구와 민관협력, 국제 교류를 추진해 나갈 것으로 예상된다. 민간의 혁신을 저해하지 않고 사회와 산업에 안전한 인공지능을 도입·활용을 위해 AI안전연구소의 기능과 역할 정립이 요구되는 시점으로, 이 보고서에서는 영국, 미국, 일본 등 주요국의 AI안전연구소의 추진 동향을 살펴보고 국내 AI안전연구소의 역할을 모색한다. Executive Summary With the proliferation of generative AI, concerns about the potential risks of artificial intelligence technologies are mounting. The technical limitations of generative AI, such as hallucinations and black-box models that complicate result interpretation, along with the societal harm caused by the misuse of technologies like deepfakes and cyberattacks, are increasing tensions. AI experts in academia and industry warn that rapid advancements toward superintelligent AI, which humans cannot comprehend, may lead to autonomous growth and loss of control, potentially threatening human existence.In response to these concerns, the European Union enacted the world's first AI regulatory law, the Artificial Intelligence Act, in May 2024. Meanwhile, the United States issued an executive order in October 2023 to guide the safe development and dissemination of AI. The first AI Safety Summit, held in the UK in November 2023, marked a pivotal moment, fostering international collaboration to ensure AI safety. Specifically, the UK, the US, and Japan have agreed to establish AI Safety Institutes, develop frameworks for testing advanced AI safety, and cooperate on information exchange, personnel training, and standardization. Following the first AI Safety Summit in May 2024, the AI Seoul Summit, co-hosted by Korea and the UK, saw Korea committing to establishing an AI Safety Institute and expressing a strong intention to participate in international cooperation for AI safety with other major countries. As the role of the government in ensuring AI safety becomes increasingly important, the AI Safety Institute will focus on developing AI safety testing methods and frameworks, creating foundational technologies for AI safety, and promoting standardization. This will include policy research, private sector collaboration, and international exchanges. To introduce and utilize AI safely in society and industry without hindering private innovation, it is essential to define the functions and roles of the AI Safety Institute. This report examines the trends and initiatives of AI Safety Institutes in key countries, including the UK, the US, and Japan, and explores the potential roles of the Korean AI Safety Institute.

  • 요약문 1. 제 목 : 2023년 국내외 인공지능 산업 동향 연구 2. 연구 목적 및 필요성 ㅇ 생성AI 기술이 전세계적 이슈로 부상 - 2022년 11월 등장한 오픈AI社의 챗GPT(ChatGPT) 이후 인공지능 기술이 다시 한 번 역사적 변곡점을 맞이하면서 급성장 - 관련 하드웨어, 서비스 개발에 대한 투자뿐만아니라 전산업에서 AI융합이 본격화되고 있으며 글로벌 빅테크를 중심으로 한 주도권 경쟁이 치열해 지고 있는 상황 - 한편, 확률적 산출물 조합에 기반한 생성AI 기술의 한계, 생성물의 오남요에 따른 사회적 부작용 등 AI에 대한 국제사회의 규제 움직임도 점차 가시화 - 이에, 알파고(AlphaGo)이후 2010년 중반부터 급격히 진행되고 있는 인공지능 기술의 진화와 함께 사회적, 제도적 추이를 지속적으로 파악하여 시의성 있게 대응하는 정책적 민첩성의 요구도 높아짐 ㅇ 본 연구는 급변하는 국내외 인공지능 산업 동향을 파악하여 국내 산업 경쟁력 강화와 인공지능 활용 확산을 위한 정책 자료를 확보하는 것이 기본 목표 - 주요국, 기관, 학술단체, 주요 기업의 동향을 파악하여 현황을 진단하고, 향후 AI 기술의 발전과 산업을 전망하여 시의적절한 AI 정책을 개발하고 의사결정을 지원할 수 있도록 기초 자료 제공 및 정책 과제 발굴에 활용 - 인공지능 산업 관련 광범위한 조사를 바탕으로 국내외 AI 정책 관련 유용한 자료(정책, 법률, 권고사항 등)을 확보하여 정책 고도화에 활용 3. 연구의 구성 및 범위 ㅇ 인공지능 산업 현황 및 시장에 대한 개괄적 정리 ㅇ 국내 및 해외 주요국·국제 기구 정책 동향 - 주요국에는 미국, 유럽, 중국, 일본, 영국, 캐나다, 독일, 프랑스, 싱가포르 포함 - 국제 기구/회의로 OECD, UN/UNESCO, G7정상회의, 세계경제포럼(WEF) 동향 분석 ㅇ 국내외 인공지능 주요 기업 동향 분석 - 해외 글로벌 빅테크(구글, 마이크로소프트, 메타, 아마존, 오픈AI, 애플, 테슬라 등) 기업 및 국내 주요 기업 (네이버, 카카오)을 포함한 주요 AI 스타트업 동향 포함 ㅇ 국제 학술 단체 연구, 표준기관, 비영리 연구 기관 동향 분석 - IEEE, ACM 및 최상위 AI 컨퍼런스 발표 및 ISO/EC 국제 표준화 동향 - 국내 TTA 인공지능 표준화 동향 및 관련 인공지능 학회 주요 연구 동향 ㅇ 인공지능 교육 및 고용, 인력 개발 관련 동향 분석 4. 연구 내용 및 결과 ㅇ 주요국 및 국제기관에서는 생성AI 관련 규범 정립 및 규제 추진 - 미국은 인공지능 청사진 마련, 신뢰성 있는 AI 개발을 위한 행정명령, 유럽은 인공지능법안 통과, 중국의 생성 AI 지침 마련, G7의 AI행동강령, 일본은 생성 AI 저작권 지침 수립 및 국내에서는 인공지능 기본법 제정 추진 ㅇ 생성AI의 핵심 기술 개발 및 관련 서비스 생태계에서 경쟁력 우위 확보를 위해 주요 기업들은 가치사슬의 수직 통합화를 가속화 - 마이크로소프트, 구글, 메타, 아마존, 엔비디아 등 주요기업들은 인수합병, 전략적 투자를 통해 인공지능 반도체, 클라우드, AI플랫폼(모델), 애플리케이션에 이르는 인공지능 가치사슬의 수직통합화를 통한 경쟁력 강화 ㅇ 생성AI 모델의 고도화, 경량화와 함께 인공지능 신뢰성 확보 연구 확대 - 대규모 컴퓨팅 인프라 투자를 통해 거대언어모델 성능 경쟁을 펼치는 추세에서 비용 효과적인 경량 모델, 오픈소스 활용 움직임이 확대되고 있음 - 특히 생성물의 부정확성, 오류, 환각 현상, 잠재적 편향성 등 신뢰성 문제가 대두됨에 따라 이를 보완하거나 최소화 하기 위한 기술적, 정책적 대응 강화 5. 정책적 활용 내용 ㅇ 본 연구 내용은 정부의 인공지능 정책 수립 (초거대 인공지능 경쟁력 강화, 전국민 인공지능 일상화 전략 등) 및 관련 법안 마련 (인공지능 기본법)을 위한 현황 분석의 기초 자료로 활용 되었음 6. 기대효과 ㅇ 국내외 환경 변화에 대한 시의성 있는 정보 제공으로 정부 정책 대응력 제고 ㅇ 동태적 동향 분석 체계 구축을 통해 일관적이고 지속적인 정책 고도화 기반 마련 ㅇ 업계, 연구자 및 이용자 등 다양한 이해관계자에게 인공지능 관련 정책, 시장, 기업 전략, 표준, 인력, 연구 개발 동향 등 다양한 AI 현황 자료 제공함으로써 민간의 AI 산업 이해도 및 전략 대응력 향상에 기여

  • 요약문 1. 제 목 : 글로벌 AI 신뢰성 동향 분석 2. 연구 목적 및 필요성 본 연구의 목적은 국내외의 AI 신뢰성 관련 동향 조사를 통해 최신 이슈를 파악 및 분석하여 정책적 시사점을 도출하고, 국내 정책 수립을 위한 기초 자료를 제공하는 데 있다. 인공지능 기술의 급격한 발전으로 국가사회 전반의 변화가 빠르게 이루어지면서, 현재 많은 산업 분야에서 AI 기술이 도입되고 일상 활용이 확산되고 있다. 하지만, AI 높은 효용성과는 반대로, 기술적 한계와 오남용 등으로 인해 환각, 편견과 차별을 야기하는 불공정, 개인정보 유출과 같은 문제가 대두되고 있다. AI 기술로 인한 위협으로부터 안전한 활용을 가능케하기 위해 AI 신뢰성을 확보하기 위한 노력들이 확산되고 있다. 세계 각국은 인공지능의 효용은 극대화하고 역기능 등은 최소화하기 위해 법제도적 기반과 통제방안 등을 마련하고 있고, 국제기관에서는 정책 보고서 및 신뢰할 수 있는 AI를 위한 지침들을 발표하고 있다. 기업들은 AI 시스템 개발에 있어 자체적인 원칙을 마련하거나 검증을 위한 방안을 수립하는 등 신뢰성을 고려한 전략을 추진하고 있다. 우리나라 또한 AI 국가 전략을 기반으로 다수의 전략과 실행 계획들을 발표하며 다양한 정책을 추진 중에 있는 만큼, 세계 주요국의 시의성 있는 동향을 파악하고 대응 할 필요가 있다. 3. 연구의 구성 및 범위 본 연구는 총 7개의 장으로 서론(1장)을 시작으로 주요국 AI 신뢰성 동향(2장), 국제기구(3장) 및 주요 기업동향(4장), 연구 및 표준 동향(5장)을 비롯하여 주요 AI 활용 산업별 동향(6장)과 시사점 및 결론(7장)으로 구성되어있다. 국내외 정부 및 국제기관 등의 언론, 공식 보도, 정책보고서와 같이 다양한 정보소스를 바탕으로 동향을 조사하여, △법제도 △기업/산업 △기술/연구 △인력/교육으로 이를 분류하였다. 본 연구에서는 한국을 포함하여 총 14개의 주요국을 다루고 있다. AI 관련 활동이 활발한 미국, EU, 영국, 중국, 일본, 캐나다를 포함하여 기타 주요국(독일, 프랑스, 호주, 스페인, 네덜란드, 싱가포르, 이스라엘)에 대한 동향을 바탕으로 국가별 AI 신뢰성 정책 동향을 기술한다. 산업별 AI 신뢰성 동향에서 고려하고 있는 산업은 크게 5가지로, AI의 도입이 활발한 △ICT △교육 △의료 △금융 △보안 산업에 해당한다. 기본적으로 2023년 이전의 정책적 흐름을 간략하게 다루고 있고, 주 조사 내용은 2023년 자료에 해당한다. 4. 연구 내용 및 결과 2017년부터 현재까지 50개국 이상에서 신뢰할 수 있는 AI를 위한 국가 전략 또는 정부 차원의 이니셔티브를 채택하였다. 이에 따라 국가 AI 정책 관리를 위해, 각 국 정부는 정부 조정기관, 위원회 설립 등을 통해 다양한 거버넌스 모델을 사용하고 있다. 현재 시의성 있는 동향 중 하나는 규제 정책이며, OECD AI 원칙과 국가 AI 전략 등을 바탕으로 규제 프레임워크를 만들고 있다. EU의 규제법안인 AI act는 2023년 말 합의가 된 만큼 추후 시행까지 동향을 추가적으로 파악할 필요가 있다. 대부분의 국가는 위험 기반의 규제 방식을 채택하고 있고, 고위험 AI에 대한 관리와 통제조치들을 집중적으로 다루고 있다. 우리나라의 AI 관련 입법안들은 AI 산업 발전을 위한 기반 마련에 초점을 맞추고 있고, 최근 들어 입법안에서 규제적 조치를 담고 있으나 아직 추가적인 논의가 필요한 상황이다. 세계적으로 AI의 신뢰성 확보가 더욱 중요해지고 있는 만큼, 주요국들은 적극적인 국가간 협력 체계를 구축하면서 다양한 논의를 진행하고 있다 OECD, UN, 유네스코 등은 꾸준히 인간 중심 접근방식에 중점을 두고 다양한 활동을 하고 있는데, OECD는 GPAI(Global Partnership on Artificial Intelligence), AI 거버넌스 작업반(AIGO) 등을 통한 국제 협력을 주도하고 있다. 이외에도 AI 책임성 향상에 관한 정책보고서, AI 규제 샌드박스 보고서 등 여러 정책 보고서 또한 발간하고 있다. G7 7개국은 히로시마 정상회담에서 히로시마 AI 프로세스를 출범하며 AI 국제 행동강령을 마련하였다. 이외에도 AI 안전 정상회의에서의 블레츨리 선언 등 대부분 생성 AI 기술 확산에 따른 위험성 증가에 대응하기 위한 움직임이 다수 존재하였으며, 국제 협력 규모가 더욱 확대되고 AI 거버넌스 등이 생기고 있는 추세다. 각 국 정부의 규제 움직임에 대해 기업 및 산업 부문에서는 과도한 규제에 우려하는 추세로, 기술 발전과 신뢰성 확보 측면에서 입장차가 존재한다. 명확한 규제가 존재하지 않는 현재, 기업들은 자율 규제 방식을 채택하고 최소한의 신뢰성 확보를 위해 개발 가이드라인이나 윤리 원칙 등을 수립하여 대응하고 있다. 향후 AI 서비스 및 SW 등에 인·검증이 본격적으로 전개될 것으로 예상되는데, 이와 관련한 국제 표준 선도에 대한 전략적 대응이 필요한 상황이며, 선제적 대응을 통해 이를 주도함으로써 선도적 입지 확보를 위한 투자가 필요할 것으로 보인다. 마지막으로 생성 AI 기술이 산업의 각 영역에 적용되고 혁신 도구로서의 가능성을 보여주고 있다. 특히 의료, 금융, 보안, 교육 등 분야에서 AI가 많이 활용되고는 있으나, 개인 및 사회에 영향력이 높은 만큼 엄격한 검증이 필요하다. 이에 도메인의 정제된 데이터를 이용해 생성 AI 기술의 신뢰성을 높이는 연구들이 진행되고 있음을 확인할 수 있었으며, 생성 AI의 잠재적 보안 취약성과 오남용으로 인한 피해에 대한 산업계의 면밀한 검토가 진행되고 있음을 파악하였다. 향후 다양한 산업 도메인과 영역에서 생성 AI 기술이 적용되기 위해서는 산업 특화된 데이터를 기반으로 생성 결과물의 신뢰성을 높이는 작업과 함께, 올바른 활용을 위한 지침과 규정이 보다 구체화될 것으로 예상된다. 5. 정책적 활용 내용 주요국의 AI 규제 입법안에서 위험을 통제하는 수단들은 데이터 관리, 위험 및 품질관리, 보안강화, 인간에 의한 통제조치, 투명성 확보와 이용자에 대한 정보제공 등으로 정리할 수 있다. 국가 및 기업들은 AI가 다루는 데이터의 방대함과 민감한 데이터의 사용 등에 따라 정보보안에 대한 요구사항이 많다. 시스템의 안정적 운영이나 오류를 방지하기 위해서도 정보보안이 강화되어야 하는데, 대부분의 법률안들은 사이버보안에 대해 특히 강조하고 있다. AI 시스템이 의도된 목적에 따라 적절한 수준의 정확성과 견고성, 사이버보안을 달성하고 수명주기 동안 일관되게 수행할 수 있도록 설계·개발될 것을 요구한다. 최근에는 AI 기술의 안전성에 초점을 맞춘 ‘AI 안전’이 더욱 중요해지고 있으며 다양한 가이드라인이 제안되고 있는 추세이다. 이외에도 EU 및 미국 등은 AI 시스템이 사용되는 동안 인간이 효과적으로 감독할 수 있도록 설계·개발되어야 하고, 시스템을 안전한 상태로 정지시킬 수 있도록 통제를 강조하고 있으며, 투명성을 확보할 것을 규정한다. 이를 위해 미국, 영국을 중심으로 AI안전, 신뢰를 확보하기 위한 거버넌스 체계도 정비되고 있다. 국가 최고지도자를 중심으로 인공지능 국가 전략을 수립 추진하고 있으며 관련해 AI안전연구소와 같은 전담연구조직을 설치해 기술 및 제도 기반 수립을 위한 연구에 힘을 싣고 있는 상황을 주시할 필요가 있다. 생성 AI의 기반이 되는 파운데이션 모델(foundation model)의 중요성이 커지는 만큼 이와 관련된 지침들이 추가적으로 정의되고 있다. 향후 생성 AI는 텍스트를 넘어, 다양한 이미지, 영상, 텍스트 정보들을 학습에 활용하고 다양한 형태의 결과물로 출력하는 이른 바 ‘네이티브 멀티모달’ 기술로 전개될 것으로 예상된다. 따라서 데이터, 콘텐츠 산업 전반에 있어 영향이 커질 것으로 예상되는 가운데 관련 지적재산권, 오남용으로 인한 사회적 피해와 혼란에 대한 선제적 대응이 필요하다. 일례로, 딥페이크와 같은 기술은 배포, 게시 금지와 같은 규제와 처벌 규정들이 도입되고 있다. 이처럼 앞으로의 AI 신뢰성 정책을 수립함에 있어, 생성 AI를 비롯하여 급격히 발전하고 있는 AI 기술을 포괄적으로 수용할 수 있는 기반을 마련해 둘 필요가 있다. 기술과 서비스 변화에 따라 AI 산업 전반에 관여하는 구성원 또는 참여자가 달라지는 환경을 고려하여 구성원 간 관계, 개별 구성원이 준수해야 하는 의무들에 대한 지속적 논의가 필요하다. 또한 주요국들은 빠르게 인공지능의 위험성을 통제하는 수단들을 고민하고 적극적으로 입법화를 시도하는 만큼, 우리나라도 신업 진흥 및 기술 발전 이외에도 국내 규제 법안 마련에도 집중할 필요가 있다. 산업 및 시장 구조와 환경 변화에 대응하는 규제조치를 포함하여 데이터 관리와 차별 방지 의무화, 품질관리와 위험관리, 사이버보안과 회복력 확보, 인간에 의한 통제가능성 확보, 기술문서 작성과 기록관리 의무, 사용자 권리 보장과 국가의 감독기능 강화 등 다양한 규제수단들이 매우 구체적으로 제시되고 있는 만큼 적극적으로 이러한 조치들을 참조할 수 있을 것으로 판단된다. 6. 기대효과 본 연구에서는 국내외의 주요 AI 신뢰성 정책 사례를 조사하고 다양한 관점에서 이를 분석하였다. 법제도, 기업 및 산업, 기술 및 연구, 인력 및 교육 분야로 구분하여 넓은 범위에서 시의성 있는 사례들을 포함하여 의미 있는 움직임들을 파악할 수 있다. 또한 분석을 통해 현재 주요국의 규제에 대한 움직임, 기업들의 대응 방법, 주요 AI 활용 산업 분야에서의 신뢰성 이슈 등에서 시사점을 도출하여 방향성을 제시하고 있다. 이러한 국가별, 산업별 정책 현황 자료 및 분석 결과는 앞으로의 새로운 국내 AI 신뢰성 정책 수립에 있어 참고 자료로서 활용 될 수 있을 것으로 기대된다.

    • 2024.02.06
    • 2761

    AI Brief 2월호

    • 2024.01.08
    • 2759

    AI Brief 1월호

    • 2023.12.08
    • 5364

    AI Brief 12월호

  • ChatGPT의 등장과 함께 생성 AI 생태계 주도권 확보를 위한 경쟁이 갈수록 치열해지고 있다. 빅테크 기업들은 보다 저렴한 비용으로 고품질의 인공지능 서비스를 제공하기 위한 전략으로 생성 AI 생태계의 가치 사슬을 수직 통합하는 방향을 택하고 있다.(후략)

    • 2023.10.11
    • 1890

    [AI Brief 스페셜] 미국, 영국, 캐나다의 인공지능(AI) 정책 동향

    • 2023.10.11
    • 1801

    AI Brief 10월호

  • 그간 SW 안전은 사람의 신체적, 물리적 피해를 유발할 수 있는 분야를 중심으로 발전해 왔다. 그러나 SW의 영향력은 급격하게 확장되고 있다. SW 신기술로 볼 수 있는 인공지능, 블록체인, 메타버스 등은 세상을 혁신시키는 핵심 기술로 부상하고 있으나, 그 이면에는 다양한 사건 사고가 존재한다. 이러한 사고는 비단 신체적, 물리적 피해를 넘어 정신적, 경제적 피해를 유발시키고 있다. (후략)

  • 인공지능의 확산은 인공지능 윤리 및 신뢰성 이슈를 발생시키며 사회적 문제를 야기하였다. 이에 국내외 정부 및 기업, 국제 기관, 학계 등 전방위적으로 대응 정책을 마련중에 있다. 국내외 주요 정부와 국제 기관 등에서는 윤리적 인공지능 및 신뢰할 수 있는 인공지능 개발을 위한 권고안, 정책 보고서를 발간하고 있으며 주요 기업들 또한 신뢰할 수 있는 인공지능 개발을 위하여 기업 윤리 원칙 수립과 신뢰성 검증 도구 등의 개발을 촉진하고 있는 상황이다. 국내 또한 인공지능 신뢰성 확보를 위해 신뢰할 만한 인공지능 실현 전략 등을 추진하고 있다. 이렇듯 시의성 있는 정책 대응 방안 마련이 필요한 시점에서 인공지능 신뢰성 확보를 위한 국내외 정책 동향을 조사하고 분석하여 국내 인공지능 정책 고도화를 위한 시사점을 제공하고자 한다. (후략)

    • 2023.09.16
    • 1611

    AI Brief 9월호

  • 생성AI빅뱅, 기회인가 위기인가?

    • 일시 : 2023년 8월 29일(화) 15:00~17:30
    • 장소 : 소프트웨어정책연구소 대회의실 (판교 글로벌R&D센터 A동 4층)