B2B 소프트웨어(SW)의 발전과 신기술의 융합은 산업 메타버스로의 진화를 촉진하고 있다. 기존에 공급망 관리(SCM), 전사적 자원관리(ERP) 등 B2B SW는 주로 기업 간 상호작용과 업무 효율화에 중점을 두었지만, 최근 인공지능(AI), 빅데이터, 사물인터넷(IoT) 등의 기술과 통합되면서 의사결정 지원과 업무 자동화가 더욱 고도화되고 있다. 또한, 이는 가상과 현실세계를 연결하는 확장현실(XR), 디지털트윈(DT) 같은 기술과 결합하면서 산업 메타버스라는 새로운 패러다임이 형성되고 있다. 산업 메타버스는 가상 공간에서 공장 운영, 제품 설계, 직원 교육 등을 가능하게 하여 현실 산업의 디지털화를 촉진하고 있다. 이는 제조, 물류, 의료 등 다양한 산업에서 활용될 수 있으며, 생산성 향상과 비용 절감 등의 실질적 성과를 창출하면서 2030년까지 약 1,000억 달러 규모로 성장할 것으로 예상된다.
산업 메타버스는 물리적 세계와 디지털 세계의 융합을 통해 가상 환경에서 현실 문제를 해결하고 산업 효율성을 높이는 기술로 이해할 수 있다. 가상 시뮬레이션, 원격 모니터링, 가상 제품 시연, 협업 등을 통해 생산성 향상, 비용 절감, 교육 및 훈련 효율성 증대를 가능하게 한다.
글로벌 빅테크 기업들은 산업 메타버스 플랫폼 선점, 기업 간 파트너십 및 레퍼런스 확보를 통해 생태계를 구축하고 있다. 국내에서도 제조, 국방, 제약 등 다양한 분야에서 도입 사례가 창출되기 시작하고 있으며, 수요기업과 공급기업 간 협력도 가시화되고 있다.
중장기적으로 산업 메타버스 관련 초기 투자와 협력이 증가하고, AI와 XR 등의 기술 발전을 통해 다양한 산업에서 활용이 확대되며, 직원 재교육과 환경적 고려, 그리고 경영진과 직원의 기술 역량 강화가 중요해질 전망이다. 제조업에 특화된 산업 메타버스 플랫폼의 경우, 기술 발전과 AI 융합으로 맞춤형-대량 생산 특화 기능들이 요구되는 방향으로 발전할 것으로 예상된다.
산업 메타버스 도입 활성화를 위해서는 사례 확산, 생태계 구축, 플랫폼 개발, AI 융합, 인력 양성이 중요하다. 첫 번째로, 제조, 의료, 에너지 등 다양한 산업에서 성공 사례를 발굴하고 이를 확산해야 한다. 기술 성숙도와 조직의 수용도를 고려하여 도입 장애를 줄이고, 정부는 도입 초기의 어려움을 해결할 가이드라인과 재교육 지원을 제공할 필요가 있다. 두 번째로, 중소기업의 산업 메타버스 도입 부담을 줄이기 위해 디지털 트윈, XR 등 신기술 도입 지원, 전문 인력 육성, 컨설팅 지원 등이 필요하다. 세 번째로, XR, AI, IoT 등 여러 기술이 융합되므로 다양한 기술 기업 간의 협업이 필수적이다. 정부는 기업, 연구기관, 학계 간 협력을 조율하여 상호 운용 가능한 생태계를 구축해야 한다. 네 번째로, 제조업에 특화된 산업 메타버스 플랫폼을 개발하여 기업들이 쉽게 활용할 수 있도록 제공해야 한다. 다섯 번째로, 산업 메타버스와 AI 융합을 촉진하기 위해 연구개발 지원, 파일럿 프로젝트 운영, 민관 협력 촉진 등 다양한 측면의 지원 제공이 필요하다. 여섯 번째로, 전문 인력 양성을 위해 교육 프로그램 개발 및 산학 협력을 강화하고 재직자 교육과 연구개발 인력 양성도 지원할 필요가 있다.
Executive Summary
The advancement of B2B SW and the convergence of new technologies are accelerating the evolution toward the industrial metaverse. Traditionally, B2B software like SCM and ERP focused on improving efficiency and interactions between businesses, but recently, the integration of technologies such as AI, big data, and IoT has led to more sophisticated decision-making support and automation. Additionally, the combination of these technologies with XR and digital twin, which bridge the virtual and real worlds, has created a new paradigm called the industrial metaverse.
The industrial metaverse facilitates the digital transformation of real-world industries by enabling factory operations, product design, employee training, and more within virtual spaces. This technology is expected to be utilized in various sectors, including manufacturing, logistics, and healthcare, driving real-world improvements such as increased productivity and cost reduction. By 2030, the industrial metaverse is projected to grow into a market worth approximately $100 billion.
The industrial metaverse can be understood as a technology that merges the physical and digital worlds, solving real-world challenges and enhancing industrial efficiency within virtual environments. Through virtual simulations, remote monitoring, virtual product demonstrations, and collaboration, it enables increased productivity, cost savings, and improved efficiency in education and training.
Global big tech companies are building ecosystems by securing industrial metaverse platforms, forming partnerships between businesses, and gaining references. In South Korea, adoption cases are emerging in sectors like manufacturing, defense, and pharmaceuticals, with visible cooperation between demand-side and supply-side companies.
In the mid to long term, early investments and collaborations related to the industrial metaverse are expected to increase, with the expansion of its use across various industries due to the advancement of technologies like AI and XR. In this context, employee reskilling, environmental considerations, and the enhancement of technical expertise among management and employees will become critical.
For industrial metaverse platforms specialized in manufacturing, advancements in technology and the fusion with AI are anticipated to drive the demand for features tailored to mass customization.
To promote the adoption of the industrial metaverse, it is essential to expand case studies, build ecosystems, develop platforms, integrate AI, and train skilled personnel. First, successful cases in various industries such as manufacturing, healthcare, and energy should be identified and disseminated. By considering the maturity of technology and organizational readiness, adoption barriers can be reduced, and the government should provide guidelines and retraining support to address initial challenges. Second, to ease the adoption burden on small and medium enterprises (SMEs), support for implementing new technologies like digital twins and XR, workforce development, and consulting are needed. Third, as multiple technologies such as XR, AI, and IoT converge, collaboration among diverse tech companies is essential. The government should coordinate partnerships among businesses, research institutes, and academia to establish an interoperable ecosystem. Fourth, an industrial metaverse platform tailored to manufacturing should be developed to enable easy access for businesses. Fifth, to foster the integration of the industrial metaverse with AI, a variety of support measures are required, including research and development funding, pilot projects, and public-private collaboration. Lastly, to develop a skilled workforce, the creation of specialized training programs, stronger academia-industry cooperation, as well as employee training and R&D talent development, are crucial.