• 자료)과학기술정보통신부 SW융합 실태조사(2023.6)
    주1) 2022년 10월 조사시점 기준

  • 자료)과학기술정보통신부 SW융합 실태조사(2023.6)
    주1) 2022년 10월 조사시점 기준

  • 자료)과학기술정보통신부 SW융합 실태조사(2023.6)
    주1) 2022년 10월 조사시점 기준

  • 자료)과학기술정보통신부 SW융합 실태조사(2023.6)
    주1) 2022년 10월 조사시점 기준

  • 자료)과학기술정보통신부 SW융합 실태조사(2023.6)
    주1) 2022년 10월 조사시점 기준

  • 최근 몇 년간 인공지능(AI) 기술의 발전은 챗GPT의 출시 이후 거대 언어 모델(LLM) 개발 경쟁을 거치며 가속화되었다. 현재 공개된 AI 모델들의 성능은 특정 분야에서는 이미 인간의 능력을 뛰어넘었고, 이에 따라 활용 범위 또한 급격히 확장되었다. 특히 생성 AI를 기반으로 하는 범용 AI는 제조, 의료, 금융, 교육 등의 여러 산업 분야에서 활용되고 있다. 하지만, AI 기반의 서비스들이 다양한 이점을 제공하는 한편, 고성능 AI에 대한 접근성의 향상으로 인해 새로운 위험에 대한 우려 또한 증가했다. 이에 따라, 기존 AI 신뢰성, 책임성, 윤리 등의 논의와 더불어, ‘AI 안전’이 더욱 중요해졌다. 악의적인 사용, 오작동과 같은 위험들이 실제 피해까지 야기하고 있는 만큼, AI의 안전 확보를 위한 대응책 마련이 시급해진 상황이다. 앞으로 등장할 더 강력한 성능을 가진 프론티어 AI 모델은 의도치 않은 결과의 도출, 제어 불가, 사회적 악영향 등 여러 잠재적인 위험을 포함할 가능성이 높아, 규제와 지침 마련을 비롯하여 다양한 국제적 노력이 이루어지고 있다. 각 국의 정부, 기업 등 이해관계자들은 AI의 안전성을 확보하기 위해, 위험을 식별하여 평가 기준을 마련하고, 안전한 AI 개발 및 배포와 위험 대응책을 마련하기 위해 노력하고 있다. 최근 연구들에서는 사고 사례나 발생 가능한 시나리오에 따른 위험들을 분류하여 제시하고 있다. 하지만, 연구마다 다양한 위험 분류 체계를 제시하고 있어, 합의된 AI 안전 평가 체계를 마련하기에는 아직 더 많은 논의가 필요한 상황이다. 미국, 영국, 일본 등은 AI 시스템의 안전성 확보를 위해 AI 안전연구소를 통해 AI 안전 및 위험 연구, 위험성 평가, 안전한 AI 개발·구현을 위한 기준 마련 등의 기능을 수행 중이다. 대표적으로 AI 위험 관리 프레임워크(美), AI 안전에 관한 과학 보고서(英) 등을 통해 AI의 위험에 대한 대응 방안을 제시하고 있으며, 한국도 설립될 AI 안전연구소를 통해 AI 안전 수요에 대응할 예정이다. 본 보고서에서는 AI 안전과 관련된 개념을 정리하고, 최근 수행된 연구들이 제시하고 있는 AI 위험 유형 및 요인을 정리하여, 사례와 함께 분석함으로써 앞으로의 AI 위험 대응에 관한 정책적 시사점을 제공하고자 한다. Executive Summary Advancements in artificial intelligence (AI) technology have accelerated, particularly following the launch of ChatGPT, which has triggered a competitive race in the development of large language models (LLMs). The performance of currently available AI models has already surpassed human capabilities in certain domains, leading to a rapid expansion in their areas of application. General-purpose AI, especially those based on generative AI, is now being utilized across various industries, including manufacturing, healthcare, finance, and education. However, while AI-based services offer numerous benefits, the increased accessibility of high-performance AI has also raised concerns about new risks. As a result, alongside existing discussions on AI reliability, accountability, and ethics, "AI safety" has become an increasingly critical issue. Given that risks such as malicious use and malfunctions are already causing real harm, there is an urgent need for measures to ensure AI safety. Governments, corporations, and other stakeholders are working to ensure the safety of AI by identifying risk factors, establishing evaluation criteria, and developing measures for the safe development and deployment of AI, as well as for responding to potential risks. Recent studies have classified risk factors based on accident cases and possible scenarios. However, since each study presents different classification, further discussion is needed to establish a common AI safety evaluation framework. The United States, the United Kingdom, and Japan are addressing safety of AI through dedicated agency, which focus on AI risk research, risk assessments, and the development of standards for the safe creation and implementation of AI systems. Notable examples include the AI Risk Management Framework (USA) and the Science Report on AI Safety (UK), both of which propose strategies for addressing AI-related risks. Korea also plans to address AI safety demands through the establishment of its own AI safety institute. This report aims to organize the concepts related to AI safety, summarize the risk factors identified in recent studies, and analyze these factors along with real-world cases to offer policy implications for future AI risk response strategies.

  • 오픈소스 개발 방식을 도입한 깃허브 사용자 수가 1억 명을 넘어서고 깃허브 활용 조직의 수가 400만 개를 넘어섰으며, 오픈소스 프로젝트 수도 지속적으로 성장하면서 오픈소스 생태계가 꾸준히 성장하고 있다. 오픈소스 생태계 성장 배경에는 글로벌 기업의 기술적 기여와 재정적 후원이 있었기 때문이다. 리눅스 재단 보고서에서 전체 오픈소스 기여자의 약 88%가 기업과 연관있는 개발자이었으며, 2006년 이후 리눅스 커널 개발 활동에서 기업 비중은 약 75%를 차지하고 있었다. 그리고, 가장 활성화된 오픈소스 재단인 리눅스 재단의 경우 재단 수익의 45%가 기업의 연회비이었으며, 기업들은 행사 후원 등을 포함하여 오픈소스 활성화를 위한 다양한 지원을 제공하고 있다. 그 결과 소프트웨어 생태계에서 오픈소스 선호 비중이 증가하고 있으며 오픈소스 서비스 시장은 2028년 752억 달러에 이를 것으로 전망될 정도로 오픈소스의 산업적 영향력이 계속 커져가고 있다. 실제로 오픈소스 운영체제인 리눅스 커널은 모바일, 서버, 슈퍼컴, 클라우드 분야에서 압도적 영향력을 가지고 있으며, 데이터베이스 분야에서 오픈소스 비중은 절반을 넘어섰다. 또한, 인공지능, 클라우드, 블록체인 등의 SW 신기술 분야에서 오픈소스 전문기업들이 증가하며 영향력을 키우고 있다. 오픈소스의 산업적 영향력 확대로 오픈소스 생태계의 경제적 효과를 새로운 관점에서 분석하는 보고서들이 유럽(EU), 영국, 미국에서 최근 발표되고 있다. 이에 본 보고서는 크런치베이스에서 Open Source Companies로 분류된 기업들의 8개월간(‘23년 8월 ~ ’24년 4월) 변화를 조사하여 최근 증가하고 있는 글로벌 오픈소스 전문기업 현황을 분석하였다. 분석 결과, 오픈소스 전문기업들은 유럽, 북미, 아시아를 중심으로 증가하였고 특히 2021년 이후 증가량이 커지고 있었다. 8개월간 변화에서 추정 매출(Estimated Revenue)과 종사자 수(Number of Employees)가 증가하며 기업 규모가 성장하는 것으로 판단되었다. 그리고 오픈소스 전문기업에 대한 투자가 창업(Seed) 투자를 중심으로 증가하고 있었으며, 연도별 투자 현황에서 2021년 이후 크게 증가하는 것으로 분석되었다. 그리고 운영 중단(Closed) 기업의 투자 정보에서 M&A 비중이 64.3%를 차지하면서, M&A가 오픈소스 전문기업의 운영 중단에 큰 비중을 차지하며 기업 청산보다 투자금 회수에 다소 유리하다고 판단된다. 마지막 시사점으로 오픈소스 생태계 확산을 3 단계(1. SW 개발자, 2. 빅테크 기업, 3. 오픈소스 전문기업)로 구분하였으며, 글로벌 오픈소스 생태계 변화에 맞춰 오픈소스 사업화 문화 확산을 위한 오픈소스 전문기업 육성 및 글로벌 오픈소스 생태계 참여 지원 필요성을 제기하였다. Executive Summary The number of users of GitHub, which adopted the open source development method, has exceeded 100 million, the number of organizations utilizing GitHub has exceeded 4 million, and the number of open source projects has also continuously grown, so the open source ecosystem grows steadily. The background of the open source ecosystem growth is based on the technical contributions and financial support of global companies. According to the Linux Foundation report, approximately 88% of all contributors were developers related to companies, and since 2006, companies have accounted for approximately 75% of Linux kernel development activities. In the case of the Linux Foundation which is the most active open source foundation, 45% of the foundation's revenue came from corporate membership fees, and companies provided additional supports for open source activation including event sponsorship. As a result, the preference for open source in the software ecosystem is increasing, and the open source service market is expected to reach $75.2 billion by 2028, which is how the industrial influence of open source is growing. For example, the Linux kernel, an open source operating system, has an overwhelming influence in the mobile, server, supercomputer, and cloud sectors, and then the proportion of open source in the database sector has exceeded half. In addition, open source companies are increasing and increasing their influence in new SW technologies such as artificial intelligence, cloud, and blockchain. As the industrial influence of open source expands, reports analyzing the economic effects of the open source ecosystem from an industrial perspective are being published in Europe (EU), the UK, and the US. So, this report analyzed the changes in the status of global open source specialized companies, which have been increasing recently, over the past eight months (August 2023 to April 2024) classified as Open Source Companies by Crunchbase. The analysis results show that open source specialized companies have increased mainly in Europe, North America, and Asia, then the increase has been increasing since 2021. Looking at the changes over the eight months, it was determined that the estimated revenue and number of employees have increased, indicating that the company size is growing. And, investment in open source specialized companies has been increasing mainly in seed investments, and the annual investment status shows that it has increased significantly since 2021. As the proportion of M&A in the investment information of closed companies accounts for 64.3%, it can be seen that M&A has a great impact on the closed operation of open source specialized companies and is advantage for recovering investment funds than liquidating the company. As a final implication, the expansion of the open source ecosystem is divided into three stages (1. SW developers, 2. Big tech companies, 3. Open source specialized companies), and the need to foster open source specialized companies and support participation in the global open source ecosystem to spread the open source commercialization culture in line with these changes in the global ecosystem is raised.

    • 2024.10.28
    • 2337

    본 연구는 디지털 전환(DX) 발전 유형에 따른 기업 맞춤형 정부 지원 방향을 제시하는것을 목적으로 한다. 이를 위해 최근 3년간 9개 주요 산업에 속한 1,181개 국내 기업을 대상으로 수집된 SW융합실태조사 데이터를 분석하였다. 분석은 디지털 전환을 촉진하는 주요 요인인 인력, 투자, 기술 수준을 중심으로 이루어졌으며, 이를 바탕으로 기업들을 네 가지 군집으로 분류하였다. 각 군집은 디지털 전환 수준에 따라 ‘DX 선도군’, ‘기술 주도 DX 발전군’, ‘신기술 활용 DX 발전군’, ‘DX 준비군’으로 정의하였다. DX 선도군은 SW R&D 투자 비중이 높고, SW 신기술 도입 및 활용 측면에서 다른 군집보다 앞서 있다. 이들 기업은 충분한 SW 인력을 보유하고 있으며, 디지털 전환의 여러 분야에서 선도적인 역할을 하고 있다. 반면, DX 준비군은 인력, 기술, 투자 측면에서 상대적으로 부족한 상태에 있으며, 디지털 전환 초기 단계에서 기술 인프라 및 전문 인력 부족으로 인한 어려움을 겪고 있다. 기술 주도 DX 발전군은 SW R&D 투자 비중은 높으나, SW 신기술을 실제로 활용하는 인력 비율이 낮다. 이 그룹은 기존 SW 기술을 기반으로 연구와 개발을 추진하며, 기술 중심의 발전을 통해 DX 선도군으로 성장할 가능성을 지니고 있다. 신기술 활용 DX 발전군은 SW R&D 투자 비중은 낮지만, SW 신기술 도입 및 활용 인력 비율이 높다. 이 그룹은 최신 기술 트렌드를 신속히 수용하며 디지털 전환을 가속화하고 있다. 디지털 전환 유형별로 산업 비중, 종사자 규모, 디지털 전환 추진 목적 및 분야, SW 전공자 비중과 조직 분포, 학력 비중, 디지털 전환 시 겪는 애로사항 등을 종합적으로 분석하였다. 그 결과, 기업의 성공적인 디지털 전환을 위해서는 정부가 재정 지원, 기술 인프라 제공, 인재 양성 등 기본적인 지원뿐만 아니라, 각 기업의 디지털 전환 발전 유형에 따른 맞춤형 지원 정책을 마련해야 한다는 결론을 도출하였다. DX 준비군에 속한 종사자 규모가 비교적 작은 기업에는 디지털 전환 부스트업 프로그램을 통해 공동 데이터 센터 및 신기술 체험 공간이 필요하며, 기술 주도 DX 발전군에는 산·학·연 협력 및 대기업 매칭을 통한 기술 개발 지원이 요구된다. 신기술 활용 DX 발전군에는 재직자를 위한 맞춤형 SW 신기술 교육 과정과 다양한 수준의 교육 모듈이 제공되어야 하며, DX 선도군에는 규제 샌드박스를 통해 혁신 기술 테스트를 지원하고, 법률·기술 전문가의 컨설팅 및 규제 완화가 필요하다. Executive Summary This study aims to propose customized government support directions for companies based on the development types of digital transformation (DX). To achieve this, data from the Software Convergence Status Survey, collected over the past three years from 1,181 Korean domestic companies across nine major industries, were analyzed. The analysis focused on key factors driving digital transformation, such as workforce, investment, and technology level, and based on these, companies were categorized into four clusters. These clusters were defined as 'DX Leading Group,' 'Technology-driven DX Development Group,' 'New Technology-utilizing DX Development Group,' and 'DX Preparedness Group,' according to their level of digital transformation. The DX Leading Group has a high proportion of investment in software R&D and leads other groups in the adoption and utilization of new software technologies. These companies have sufficient software personnel and play a leading role in various fields of digital transformation. On the other hand, the DX Preparedness Group is relatively lacking in terms of workforce, technology, and investment, facing challenges such as a shortage of technical infrastructure and skilled personnel in the early stages of digital transformation. The Technology-driven DX Development Group has a high proportion of software R&D investment but a low percentage of personnel utilizing new software technologies. This group promotes research and development based on existing software technologies and has the potential to grow into the DX Leading Group through technology-centered development. The New Technology-utilizing DX Development Group has a low proportion of software R&D investment but a high percentage of personnel utilizing new software technologies. This group rapidly adopts the latest technology trends and accelerates digital transformation. The study comprehensively analyzed factors such as the industrial distribution, size of employees, purposes and fields of digital transformation, proportion of software majors and organizational distribution, education levels, and difficulties experienced during digital transformation, according to the types of digital transformation. As a result, it concluded that, for a company's successful digital transformation, the government should not only provide basic support such as financial aid, technology infrastructure, and talent development but also establish tailored support policies according to each company’s type of digital transformation. For small and medium-sized enterprises in the DX Preparedness Group, a digital transformation boost-up program that provides joint data centers and new technology experience spaces is necessary. For the Technology-driven DX Development Group, support for technology development through industry-academia-research cooperation and matching with large enterprises is required. The New Technology-utilizing DX Development Group needs tailored software new technology education programs for incumbent workers and various levels of educational modules. Lastly, the DX Leading Group should be supported through regulatory sandboxes to test innovative technologies, along with consulting from legal and technical experts and regulatory relaxation.

    • 2024.10.18
    • 2817

    • 행사명 : 2025 SW 산업전망 컨퍼런스

    • 주제 : 소프트웨어와 인공지능 미래를 먼저 보다

    • 일시 : 2024.12.3.(화) / 13:20 ~ 17:20








    • 2024.10.07
    • 2131
    e-book 보기 이슈 ISSUE 유럽연합 인공지능법(EU AI Act)의 주요내용 및 시사점 책임 있는 AI를 위한 기업의 노력과 시사점 포토에세이 PHOTO ESSAY 중간-이호준 포커스 FOCUS 디지털 무역 현황 및 이슈 AI 거버넌스의 글로벌 지형 : AI 선도국 및 글로벌 사우스 국가의 거버넌스 전략 탐색
    • 2024.10.07
    • 2140

    안전하고 책임 있는 AI를 위한 노력과 방향 안전하고 책임 있는 AI를 위한 노력과 방향 발표자료 [download id=23541] [download id=23542]

  • 지난 4월 국가과학기술의 혁신을 위해 설치된 대통령 직속 기구인 국가과학기술자문회의는 글로벌 경제·안보 패러다임을 급속하게 바꿀 3대 게임체인저 기술 이니셔티브를 심의·의결하였다. 세 가지 핵심 기술은 AI-반도체, 첨단바이오, 퀀텀(양자)이다. ‘AI-반도체’는 AI와 반도체 기술을 결합하여 고성능·저전력 반도체를 개발하고 이를 통해 다양한 산업 분야에서 혁신을 이끌어내는 것을 목표로 한다. ‘첨단바이오 기술’은 생명·건강과 직결되는 기술로서 혁신기반기술과 고품질 데이터의 결합으로 바이오 가치사슬을 강화하는 데 중점을 둔다. ‘퀀텀’은 양자 컴퓨팅과 통신 기술을 개발하여 미래의 정보처리와 보안 분야에서 혁신을 일으키는 것을 추구한다. 이처럼 세 가지 기술은 각기 다른 특성을 보이지만 난제를 해결하고 사회적 가치를 창출한다는 점에서 동일한 목적을 지닌다. 세 가지 기술의 효과적인 확보는 환경, 조직, 협력의 관점으로 접근하는 시스템적 사고와 전략을 통해 달성될 수 있다. 본고에서는 전체 숲을 거시적으로 조망하는 시스템적 사고를 통한 접근과 세부 전략에 대해 논의해보도록 한다. 1. 환경, 조직, 협력의 ‘시스템적 사고’로 접근하라 3대 게임체인저 기술은 공통적으로 ‘시스템적 사고’를 요구한다. 시스템적 사고는 환경, 조직, 협력을 종합적으로 바라보는 관점이다. 즉, 각 기술을 둘러싼 환경을 비롯하여 정부, 기업, 대학, 연구기관 등 조직 차원의 대응 전략, 주체 간 협력에 대한 파악을 종합적으로 고려한 시스템적 사고가 이루어질 때 세 가지 기술을 효과적으로 확보할 수 있다. 각 기술은 고유한 환경적 요인에 의해 영향을 받는다. 환경적 요인은 국가과학기술자문회의 전원회의에서 의결한 각 기술의 이니셔티브를 통해 확인된다. AI-반도체는 AI와 반도체 산업이 결합한 분야로, 급속도로 발전하는 AI 기술과 데이터 수요에 의해 급격히 성장하고 있다. 발전 속도만큼 복잡해지는 기술, 데이터 센터의 확장, 에너지 효율 등이 중요한 환경적 요소로 작용한다. AI-반도체 이니셔티브는 ‘인공지능 G3 도약, K-반도체 새로운 신화 창조’를 비전으로 저전력 AI-반도체 달성, 글로벌 R&D·현지 실증 등 새로운 수출산업화 전략적 지원을 제시하였다. 차세대 범용 AI(GAI), 경량·저전력 AI, AI 슈퍼컴퓨팅 등의 중점기술과 거버넌스 차원에서 국가인공지능위원회 설립, 글로벌 AI 리더십 지속을 위한 ‘AI 서울 정상회의’ 개최도 주목된다. 에너지 효율은 중점기술들을 통해 강조되고, 기술적 복잡성과 같은 환경적 요인은 AI로 인해 발생하는 문제 혹은 파급효과를 함께 고민하기 위한 넓은 거버넌스를 통해 드러난다. 첨단바이오는 저출산·고령화 시대, 코로나19와 같은 전염병, 맞춤형 의료 등 인간의 삶에 직접적인 영향을 미치는 요인과 연관된다. 이에 관련 수요가 끊임없이 증가하고 있으며 데이터 활용, 신약 개발, 유전자 편집 등과 같은 환경적 요소가 존재한다. 첨단바이오 이니셔티브는 이러한 첨단바이오의 환경적 요소를 파악하여 기술을 확보하기 위해 ‘대한민국 새로운 성장 DNA, 제2의 반도체 신화 첨단바이오’라는 비전을 제시하였다. 또한, 이니셔티브에서 제시한 9대 중점기술에는 첨단바이오의 환경적 요소에 대한 고민이 담겨있다. 한국인 100만 명 빅데이터, 인체 표준 분자지도와 같은 바이오·의료 데이터 기술은 첨단바이오에 있어 데이터 활용의 중요성을 보여주며, AI 신약과 첨단의공학, 혁신기반기술은 다양한 기술을 접목한 신약 개발과 유전자 편집이 지속적으로 고려되어야 할 환경 요소임을 시사한다. 양자 기술은 상용화 초기 단계로 매우 복잡한 기술적 특성을 보인다. 따라서 고비용 인프라, 장기적 연구의 필요성, 제한된 인력과 지식 등이 환경 요소로 꼽힌다. 퀀텀 이니셔티브는 ‘양자과학기술 대도약, 디지털을 넘어 퀀텀의 시대로’라는 상대적으로 큰 비전을 제시하였다. 양자 기술은 타 기술에 비해 상용화 초기 단계에 속하고 복잡한 기술이기 때문에 한 단계 도약하자는 의미를 담았다고 볼 수 있다. 이니셔티브의 주요 내용을 살펴보면 2030년까지 양자 전문인력을 1천 명 이상 확보하고 5개 이상 기술 선도국과 정부 간 신규 퀀텀 협력 추진하겠다는 전략이 등장한다. 즉, 고비용 인프라를 요구하지만, 제한된 인력과 지식의 어려움이 있는 양자 기술의 경우 단기간에 무리한 기술 확보 전략을 제시하기보다는 장기적 연구를 수행하기 위한 전문인력양성과 산·학·연 연구 거점 구축, 기술선도국과의 교류와 같은 환경이 뒷받침되어야 함을 보여준다. 환경적 요소에 대해 파악했다면 다양한 조직들의 대응 전략에 대한 고민이 필요하다. 정부는 각 기술을 확보하기 위해 전략적 투자를 확대하고 연구개발(R&D)을 지원해야 한다. 고비용 인프라와 전문인력이 필요한 분야에는 장기적인 투자를 고려해야 하며, 신기술의 빠른 상용화를 가능하게 하는 규제 혁신과 기술의 윤리적 사용을 위한 가이드라인이 요구된다. 나아가 글로벌 협력을 강화하여 국제적인 공동 프로젝트를 추진하고 기술 경쟁력을 제고해야 한다. 우리나라도 준회원국으로 가입된 EU의 Horizon Europe과 같은 다자간 연구혁신 프로그램이 좋은 본보기가 될 것이다. 기업은 혁신적인 연구개발에 집중해야 한다. 자체 R&D를 통해 시장 수요에 맞는 제품을 빠르게 상용화하고 오픈 이노베이션을 통해 스타트업, 연구소, 대학과의 협력을 추진하여 혁신적인 기술을 발굴해야 한다. 국내뿐만 아니라 글로벌 시장에서도 경쟁력을 확보하기 위해 신흥 시장을 개척하고 해외 연구소와의 협력도 강화할 필요가 있다. 대학과 연구기관은 기초 과학 연구를 강화해야 한다. 이를 통해 각 기술의 이론적 토대를 마련하고 혁신적인 아이디어를 제공하는 역할이 필요하다. 또한, 첨단 기술 분야의 인재를 양성하기 위해 교육 과정에 대한 혁신을 고민하고 산업계와의 협력을 통해 현장 맞춤형 교육을 제공할 필요가 있다. 마지막으로 각 조직의 강점을 극대화하면서도 모든 주체들이 지속적으로 협력할 때 시스템적 사고가 비로소 가능하다. 게임의 판도를 바꾸는 기술은 그만큼 기술의 복잡성과 고도화로 인해 다양한 주체가 가진 자원과 역량을 결합할 때 효과적인 연구개발이 가능하기 때문이다. 따라서 협력을 통해 연구 성과를 공유하고 상호 보완적으로 기술을 확보해 나가는 전략을 구축해 나가야 한다. 2. 광범위 협력을 통해 융합을 주도하라 결국 세 가지 기술의 확보 전략은 광범위한 협력과 융합연구가 핵심이다. AI-반도체는 특히 전 세계적으로 핵심 기술로 부상하였다. 개별 기술에 대한 관심을 넘어 자율주행, 스마트 시티, 금융 등 다양한 분야에서 필수적인 기술로 자리 잡으면서 고성능·저전력 반도체의 수요가 급증했기 때문이다. 지난 5월 21일부터 22일 서울에서는 AI 안전, 혁신, 포용을 주제로 한국과 영국이 공동으로 개최한 ‘AI 서울 정상회의’가 진행되었다. 세계 여러 지도자들과 CEO들이 모여 협력을 통해 인공지능의 잠재력을 실현하기 위한 AI 거버넌스의 원칙을 제시하고 세 가지의 융합적 키워드를 주제로 설정하였다는 점에서 의미가 있다. AI반도체는 게임 판도를 바꾸는 혁신적 기술인만큼 앞으로도 일자리, 윤리 문제 등 새로운 기회와 위기를 동시에 발생시킬 것이다. 따라서 AI-반도체로 발생할 위기까지 염두에 두고 국내·외 다학제적 협력과 융합을 주도하여 혁신 기술을 확보하고 지속적으로 관련 이슈를 선점할 필요가 있다. 첨단바이오와 퀀텀 역시 광범위한 협력과 융합이 필수적이다. 첨단바이오와 퀀텀 이니셔티브는 각각 우수 기술기반 창업 환경 구축과 산·학·연 양자 연구거점 구축을 추진전략으로 제시하였다. 최근 AI 분야에 대한 관심이 상대적으로 급증하면서 AI를 활용한 창업 기업이 다수 등장하였지만 다른 두 기술도 정부뿐만 아니라 민간에서 많은 관심을 갖고 협력해야 한다. 첨단바이오는 식량·기후변화 등 다양한 사회문제와 직결되고 퀀텀은 문제를 효과적으로 해결할 수 있는 잠재력이 큰 기술이기 때문이다. 따라서 기술에 대한 좋은 아이디어를 가진 인재, 소셜벤처를 적극적으로 발굴하고 산·학·연 소통을 활성화해야 한다. 모든 기술은 미국, EU, 영국 등 선도국과 선도기관과의 융합연구가 필수적이다. Horizon Europe의 사례를 보면, 유럽은 유럽 전역을 단일 연구지대로 구축하여 재정을 투자하는 연구혁신 프로그램을 추진 중이다. 2021년부터 2027년까지 7년간 955억 유로(약 138조 원)를 지원한 것은 연구혁신 분야에서 세계 최대 규모다. 막대한 투자로 이러한 프로그램을 추진하는 가장 큰 이유는 협력과 융합을 통해 과학기술의 개방성이 확대되고 혁신의 가능성이 커지기 때문이다. 우리나라도 준회원국으로 가입되어 글로벌 협력의 길이 더 열렸지만 이를 벤치마킹하여 보다 적극적으로 해외 국가, 기업, 인재와의 교류를 추진하고 다양한 연구 컨소시엄을 구축해 나간다면 융합을 통한 기술 확보가 가속화될 것이다. 3. 지방을 테스트베드로 삼아 기회를 넓혀라 지방은 산업의 디지털 혁신이 실제 구현될 수 있는 기회의 장이다. 스웨덴 말뫼는 한 때 조선업이 쇠퇴하면서 말뫼의 눈물이라 불렸는데 디지털·바이오 등 신사업이 성장하면서 말뫼의 웃음이라 불릴 정도로 현재는 지역의 모습이 탈바꿈되었다. 지역 내 조선업의 상징이었던 대형 크레인은 철거되었고 54층 빌딩 터닝 토르소를 중심으로 신산업 육성이 이루어졌다. 이처럼 지방은 위기를 기회로 바꿀 수 있는 전략의 요충지다. 우리나라도 여러 지방에 다양한 자원과 기회가 존재한다. 스마트팜, 스마트공장과 같은 1, 2차 산업의 디지털 혁신은 해당 산업을 먹거리로 삼아온 지방에서 이해도가 가장 높다. 따라서 지방을 디지털 혁신 구현의 테스트베드로 삼는다면 각 지역의 자원과 특화 산업을 적극 활용해 산업의 디지털 혁신 구현을 앞당기고 게임체인저 기술의 확보가 빨라질 수 있다. 첨단바이오를 예를 들어 보자. 첨단바이오는 코로나19와 같은 감염병, 탄소중립 등 인류가 당장 체감하는 문제들을 해결하는 기술이다. 강원특별자치도는 한국과학기술연구원(KIST)과 바이오 국가첨단전략산업 특화단지 조성 및 기술교류를 위해 업무협약을 체결하여 우수인력 교류 및 공동연구, 기업지원 등을 협력하였다. 노력의 결과로 강원도는 지난 6월 바이오 국가첨단전략산업 특화단지를 유치하였고, AI 기반의 신약개발과 중소형 CDMO(연구개발단계부터 임상, 제조 등 모든 과정을 서비스화한 사업) 거점으로 조성되는 성과를 얻었다. 또한, AI 헬스케어 글로벌혁신특구 등 바이오 인프라와 항체산업, 디지털헬스케어·의료기기 등 주변 지역과의 연계·확장을 통해 바이오산업의 발전을 추진한다. 이전에도 강원도는 디지털 헬스케어를 대상으로 규제자유특구가 지정되었기 때문에 첨단바이오 기술 확보의 길이 더 넓어졌다고 볼 수 있다. 강원도 외에도 전북특별자치도는 탄소 융·복합 산업을 대상으로 규제자유특구가 지정되어 있고, 광주광역시는 AI 융합 선도도시, 경상북도는 메타버스 수도, 전라남도는 에너지·농업 디지털 혁신을 내세우는 등 기술 확보를 위해 노력해 왔다. 지방 도시들은 디지털 기술과 혁신에 대한 갈망이 높기 때문에 이를 기술 확보의 기회로 연결한다면 좋은 성과를 얻을 수 있을 것이다. 한 걸음 나아가 ‘지역의 세계화’에 대한 고민도 제안해본다. 지역의 세계화는 특정 지역이 글로벌 차원에서 상호교류가 활성화되는 것을 의미한다. 국내 지방정부는 2023년 12월 기준으로 91개국 1,384개 도시와 1,873건의 국제교류를 진행 중이다. 즉, 지방정부의 해외 자매결연 네트워크를 활용하면 혁신기술의 시장성 검증 기회를 살리고 기술 확보의 기회가 증가할 수 있음을 시사한다. 따라서 기술 확보를 위해 지방 테스트베드 전략을 활성화하고 지역의 세계화를 통해 기회를 넓힌다면 게임의 판도가 빠르게 바뀔 수도 있을 것이다. 4. 게임의 흐름을 바꾸는 전략의 유기적 연계 AI-반도체, 첨단바이오, 퀀텀 기술의 확보는 단순한 개별 기술의 발전을 넘어 우리 사회 전반에 혁신을 불러일으킬 수 있는 중요한 원동력이 될 것이다. AI-반도체는 산업 전반의 생산성을 제고하고, 첨단바이오는 맞춤형 의료, 신약 개발을 가속화며, 퀀텀은 기존의 한계를 뛰어넘는 기술적 발전으로 과학과 산업의 패러다임을 전환시킬 수 있다. 시스템적 사고를 통한 접근과 광범위한 협력, 지방 테스트베드 전략은 유기적으로 연결된다. 기술의 확보는 환경에 대한 이해, 조직의 대응, 광범위한 협력이 필요하고 지방을 테스트베드로 삼는 전략도 결국 중앙정부와 지방정부, 산·학·연 등이 함께할 때 효과적으로 추진될 수 있기 때문이다. 효과적인 전략의 추진으로 세 가지 기술의 확보를 앞당겨 글로벌 경쟁에서 우리나라가 중요한 순간에 게임의 흐름을 바꿀 수 있는 게임체인저가 되길 소망한다.
    • 2024.10.07
    • 1125

    목차 Table of Contents Ⅰ. 인공지능 산업 동향 브리프 1. 정책/법제 ▹ 미·영·EU, 법적 구속력 갖춘 유럽평의회의 AI 국제조약에 서명 ▹ 미국 캘리포니아 주지사, AI 규제법안 「SB1047」에 거부권 행사 ▹ 호주 의회, 동의 없는 딥페이크 음란물 공유를 처벌하는 법안 통과 ▹ UN, ‘인류를 위한 AI 거버넌스’ 최종 보고서 발표 2. 기업/산업 ▹ 앤스로픽과 오픈AI, 미국 AI 안전연구소와 모델 평가 합의 ▹ 오픈AI, 추론에 특화된 AI 모델 ‘o1-프리뷰’ 출시 ▹ 메타의 AI 모델 ‘라마’, 다운로드 수 3억 5천만 회 달성하며 활발한 생태계 형성 ▹ 구글, AI 신기능 ‘젬스’와 이미지 생성 모델 ‘이마젠 3’ 출시 ▹ 구글, C2PA 표준 적용으로 AI 생성물의 투명성 향상 추진 ▹ 마이크로소프트, 오픈소스 소형 언어모델 ‘파이 3.5’ 공개 ▹ 하이퍼라이트, 오류를 자체 수정하는 ‘리플렉션 70B’ 오픈소스 모델 공개 3. 기술/연구 ▹ 영국 옥스퍼드大 연구 결과, 글로벌 AI 칩 분포의 양극화 현상 심각 ▹ 메타, LLM의 품질과 정확성을 평가하는 ‘자가학습 평가자’ 개발 ▹ 코히어 연구, LLM 사전학습에 코드 데이터 포함 학습시 LLM의 성능 향상 확인 ▹ 중국 연구진, 재판 시뮬레이션으로 LLM의 법률 역량 향상하는 기법 개발 ▹ AI 연구자들, 벤치마크 ‘챗봇 아레나’의 편향과 투명성 부족 지적 4. 인력/교육 ▹ 영국 정부, AI 교육기업 대상 ‘콘텐츠 스토어’ 프로젝트 발표 ▹ 유고브 조사 결과, 미국 근로자들 AI의 일자리 영향에 엇갈린 의견 표시 ▹ IBM 기업가치연구소, ‘생성 AI 시대 인적 잠재력 재해석’ 보고서 발간 ▹ 서비스나우, AI 도입으로 영국에서 61만 개 일자리 창출 전망 Ⅱ. 주요 행사 ▹Cypher 2024 21 ▹AI World Congress 2024 21 ▹ML and AI Model Development and Governance 21

  • 전 세계적으로 정부는 디지털 기술을 활용해 공공서비스를 혁신하고, 사회문제를 해결하는 새로운 형태의 거버넌스 모델을 모색하고 있다. 전통적인 전자정부 모델이 정부 업무와 서비스를 디지털화하여 효율성과 투명성을 강조했던 반면, 디지털 정부는 국가 전체의 디지털 전환을 통해 사회문제를 해결하고 국가 경쟁력을 강화하는 것을 목표로 한다. 정부의 형태가 데이터와 디지털 기술을 적극적으로 활용하는 방향으로 변화하면서 민간의 아이디어와 기술을 활용한 민·관 협력과 혁신 생태계의 진화를 강조하는 GovTech이 부상하였다. GovTech은 정부(Government)와 기술(Technology)의 합성어로 공공서비스 개선과 정부 운영의 효율성 향상 등 기술을 통한 혁신을 주도하는 것을 의미한다. 본 연구는 GovTech의 개념과 글로벌 동향을 살펴보고 미국, 유럽, 아시아, 남미 등 다양한 국가에서의 GovTech 사례를 바탕으로 GovTech의 유형화를 시도하였다. 특히, 다양한 국가의 GovTech 사례들을 검토하여 GovTech이 실현되는 층위, 기대효과에 따라 GovTech의 유형을 거버넌스 수립형, 아이디어 공모형, 플랫폼 활용형, 문제 해결-기업 성장 동시추구형, 혁신 연구형 등 다섯 가지로 분류하였다. 아직 발전 초기 단계에 있어 이론화가 부족한 GovTech 분야에서 사례 기반의 GovTech 유형화 시도는 추상적인 GovTech의 개념을 명확히 하고 GovTech 정책 수립을 위한 기초 자료를 제공할 수 있다. 나아가 본 연구는 유형화 연구를 바탕으로 GovTech을 실현하려는 목적, 추진하고자 하는 방식, 기대효과에 따른 맞춤형 GovTech 정책 전략 수립에 기여한다. Executive Summary Globally, governments are leveraging digital technologies to innovate public services and explore new governance models to address societal challenges. While traditional e-government models focused on digitizing government operations and services to emphasize efficiency and transparency, digital government aims to solve societal problems and enhance national competitiveness through the digital transformation of entire nations. As governments increasingly utilize data and digital technologies, there has been a rise in GovTech, which emphasizes public-private partnerships and the evolution of innovation ecosystems, leveraging ideas and technologies from the private sector. GovTech, a combination of "government" and "technology," refers to innovations driven by technology that aim to improve public services and enhance the efficiency of government operations. This study examines the concept and global trends of GovTech and attempts to classify different types of GovTech based on case studies from various countries, including the United States, Europe, Asia, and South America. Specifically, the study categorizes GovTech into five types based on the layers of implementation and expected outcomes: governance establishment, idea crowdsourcing, platform utilization, problem-solving with simultaneous business growth, and innovation research. Since GovTech is still in its early stages and lacks theoretical foundation, this case-based attempt to classify GovTech helps clarify the abstract concept and provides fundamental data for GovTech policy development. Furthermore, this study contributes to the formulation of tailored strategies based on the purpose, approach, and expected outcomes of GovTech implementation.

    • 2024.09.13
    • 1366
    SW 중심사회 월간 2024 SEP Vol.123 이슈: 채용공고 데이터 분석을 통한 SW융합인력 수요 현황과 시사점, 해외 AI안전연구소 추진 현황과 시사점. 트렌드: 3대 게임체인저 기술(AI-반도체, 첨단바이오, 양자 기술) 확보 전략. 포토에세이: 중간-이호준. 포커스: 디지털 시대의 새로운 자산: 토큰, 증권과 저작권 현대 전쟁의 사이버 인지전과 뇌과학의 무기화. SPRi 소프트웨어정책연구소 Software Policy & Research Institute
    • 2024.09.04
    • 2719

    목차 Table of Contents Ⅰ. 인공지능 산업 동향 브리프 1. 정책/법제 ▹ 미·영·EU, 생성 AI의 공정한 경쟁환경 조성을 위한 공동 성명 발표 ▹ 미국 통신정보관리청, 오픈소스 기반모델의 위험에 대한 모니터링 촉구 ▹ 중국 베이징市, AI 플러스 행동계획(2024~2025) 발표 ▹ 독일 연방정보기술보안청, AI 시스템의 투명성에 관한 백서 발간 2. 기업/산업 ▹ 오픈AI, AI 기반 검색엔진 ‘서치GPT’ 프로토타입 공개 ▹ 메타, 폐쇄형 첨단 AI 모델과 대등한 성능의 오픈소스 모델 ‘라마 3.1’ 공개 ▹ 구글, 소형 오픈소스 모델 ‘젬마2 2B’ 공개 ▹ 메타와 구글, 환각과 딥페이크 등 AI 이슈 대응 ▹ 피규어AI, 최신 휴머노이드 로봇 ‘피규어 02’ 공개 ▹ xAI, ‘그록-2’ 출시 이후 이미지 생성 논란 확산 3. 기술/연구 ▹ 미국 국가과학기술위원회, 2020년~2024년 AI R&D 경과보고서 발간 ▹ 구글 딥마인드, 생성 AI의 오용 현황 분석 ▹ 애플, 애플 인텔리전스의 기반모델 개발 프로세스 공개 ▹ 네이처, AI 생성 데이터로만 학습한 AI 모델의 붕괴 위험 증가 경고 논문 게재 ▹ 영국 에이다 러브레이스 연구소, AI 안전성 평가의 개선 필요성 제기 ▹ 사카나 AI, 과학 연구를 자동화하는 ‘AI 사이언티스트’ 개발 4. 인력/교육 ▹ 유네스코, 교육에서 생성 AI의 기회와 위험 분석 ▹ 세계경제포럼 4차산업혁명센터, AI로 인한 기술 실업 가능성이 희박하다고 전망 ▹ AI 기반 ICT 인력 컨소시엄, ICT 일자리의 92%에 AI의 영향 예측 ▹ 오픈AI, 챗GPT 부정행위 탐지 도구 개발 후 공개 유보 Ⅱ. 주요 행사 ▹Generative AI World 2024 ▹AI Expo Europe ▹Big Data & AI World

    • 2024.09.02
    • 655
    • 입찰마감 : 2024.09.13.(금) 10:00까지
    • 서류접수 : 나라장터 e-발주시스템(http://rfp.g2b.go.kr/)
  • ISSUE REPORT 2024.5.3. IS-171 A Study on the Development of The Industrial Classification System of Metaverse Sang-Yeal Han, Yiseul Jeon, Nayeon Kwak, and Seulki Lee SPRi 소프트웨어정책연구소 Software Policy & Research Institute
  • 본고는 생성형 AI로 인한 소프트웨어 개발 프로세스별 개발 업무 변화를 살펴보고, 이것이 소프트웨어(Software, 이하 SW) 개발자 직무에 어떠한 영향을 주는지와 그 시사점에 대해 논하려고 한다. 생성형 AI란, 텍스트, 오디오, 이미지, 동영상 형태의 새로운 콘텐츠를 생성하도록 설계된 인공지능 모델이다. 생성형 AI라는 화두를 세상에 내놓은 OpenAI사의 ChatGPT는 지금까지 출시된 애플리케이션 중 가장 빠른 속도로 이용자 수가 늘어나고 있다. 이러한 경향은 생성형 AI의 활용이 업무 효율성을 향상할 것으로 기대되기 때문이며, 특히 개발환경의 변화로 인해 개발자의 역할 또한 변화할 것으로 전망된다. SW 개발은 SW 요구분석, 설계, 구현 및 시험 등의 복잡한 프로세스로 구성되어 있다. 또한 고객사의 개발 및 운영 환경, 성능 및 보안 요구 수준, 유지보수성 등 다양한 요소를 고려해야 하는 정형화하기 어려운 업무이기 때문에 생성형 AI가 개발자 업무에 주는 영향은 예상만큼 크지 않았다. SW개발 단계 중 SW 구현과 SW 시험 단계에는 생성형 AI 활용이 가능하다. 생성형 AI를 이용하면 SW 구현 단계에서는 코드 생성, 코드 자동완성, 주석 작성, 코드 번역, 리버스 엔지니어링 등이 가능하다. SW 시험은 시간이 많이 소요되고 반복적인 업무가 많아, 생성형 AI 활용에 가장 효과적인 단계이다. 반면에 고객과의 커뮤니케이션이 중요한 SW 요구분석 단계와 최신 기술을 포함한 복잡한 기술을 연계하여 수행해야 하는 SW 설계 단계는 생성형 AI의 활용이 쉽지 않다. 전반적으로 생성형 AI 개발도구의 활용은 개발자의 생산성 향상에 효과가 있으나, 개발 단계, 개발하는 제품이나 서비스의 종류, 개발자의 수준 등에 따라 생성형 AI의 활용 방법 및 효과의 차이가 큰 것으로 분석되었다. 개발도구로써 생성형 AI의 활용은 초급개발자보다 생성형 AI 환각에 의한 잘못된 정보를 빠르게 판단할 수 있는 중급개발자의 생산성을 더 높이는 것으로 확인되었다. 반면에 초급개발자는 생성형 AI를 프로그램 언어 학습에 유용하게 활용할 수 있으며, 초급개발자 수준이 빠르게 높아질 것으로 예측된다. SW개발자의 작업에서 생성형 AI의 영향을 받는 작업은 일부분이다. 개발자 직무를 수행하기 위해서는 데이터 분석, SW 및 DB 설계, 시스템 결정 및 성능 개선 등 개발 관련 기술 업무 이외에도, 동료와 업무 협의, 이슈 해결 등의 소프트스킬이 필요한 작업이 있어 개발자 업무와 개발 생산성에 대한 생성형 AI의 영향 정도를 정량적으로 파악하기는 어렵다. 생성형 AI 시대에 대비하기 위해 개발자 수준에 따른 세분화된 생성형 AI 활용 전략 마련, 직무별로 상이한 생성형 AI의 영향을 고려한 개발자 양성 규모 검토가 필요하다. 또한 생성형 AI를 활용하면서 직면할 수 있는 저작권 문제, 프라이버시 문제, 모델 오남용 문제에 대해 적절히 대응할 수 있도록 기본적인 AI 윤리 교육에 대한 강화가 시급하다. Executive Summary In this article, we'll take a look at how generative AI is changing the development process and discuss the implications for developer jobs. Generative AI is an AI model designed to generate new content in the form of text, audio, image and video. The use of generative AI is growing at a rapid pace. This is because it is expected to improve work efficiency, and the role of developers is also expected to change due to changes in the development environment. SW development consists of a complex process of SW requirements analysis, design, implementation, and testing. In addition, the impact of generative AI on developers' work is not as large as expected because it is a difficult task to formalize that requires consideration of various factors such as the customer's development environment, performance and security requirements, and maintainability. Generative AI can be used for SW implementation and SW testing during the SW development phase. On the other hand, the SW requirement analysis phase, which requires communication with customers, and the SW design phase, which involves complex technologies including the latest technologies, are not easy to use generative AI. Overall, the use of generative AI development tools is effective in improving developers' productivity, but there are large differences in how generative AI is used and its effectiveness depending on the development stage, the type of product or service being developed, and the level of developers. Only a small part of a SW developer's work is affected by generative AI. In addition to technical tasks related to development, such as data analysis, SW and DB design, system performance improvement, developers also need soft skills, such as collaborating with colleagues, so it is difficult to quantify the extent of the impact of generative AI on developer work and development productivity. In order to prepare for the era of generative AI, it is necessary to prepare a strategy for using generative AI that is categorized by developer level and review the scale of developer training considering the impact of generative AI by job function. It is also urgent to strengthen basic AI ethics education so that developers can respond appropriately to copyright, privacy, and model misuse issues that may arise while utilizing generative AI.